Elevated fluoride (F⁻) levels in groundwater, primarily due to geogenic processes, pose significant health risks, including dental and skeletal fluorosis and neurological disorders. This study aimed to quantify source-dependent F⁻ exposure at the community level in selected tropical dry regions of Andhra Pradesh, India. These locations include Chintal Cheruvu, Rompicharala, Shantamangalur, Thimmapur, and Nadendla. Community surveys and drinking water sample analyses were conducted in these regions. Dental Fluorosis Index (DFI) was used to estimate exposure levels across age and sex groups. Findings of surveys indicate that groundwater consumption with high F⁻ (4.3 mg/L) results in the highest exposure dose (0.62 mg/kg/day), with Chintal Cheruvu identified as the most affected. A strong positive correlation was observed between exposure dose, water F⁻ content, and the Community Fluorosis Index (CFI), with R² values of 0.98 and 0.97, respectively. Dental fluorosis prevalence exceeded 80% across all age groups, and household surveys revealed 100% unawareness of F⁻ exposure risks. Though there exist many ways to determine the impact of fluoride, the hierarchy of regions may change with the type of parameter chosen. To address this, we developed the Fluoride Impact Index (FII), a multi-criteria index computed considering various parameters indicating the impact of fluoride in a region. The magnitude of FII for Chintal Cheruvu is 0.563 which is highest among the considered regions indicating that it is most impacted region that needs remedial measures first in the hierarchy. Rompicharala with FII as 0.252, Nadendla (0.223), Shantamangalur (0.214), and Thimmapur (0.188) follows the hierarchy. These findings highlight the urgent need to raise awareness about F⁻ exposure risks and to identify sustainable alternative water sources. Immediate interventions, including human health risk assessments using the USEPA approach and the provision of safe drinking water, are critical to achieving SDG-6 of safe drinking water for all by 2030. © 2024