Department of Computer Science Engineering

M.Tech. Artificial Intelligence and Machine Learning Curriculum and Syllabus

(Applicable to the students admitted during AY: 2022-23)

School of Engineering and Sciences SRM University *AP*, Andhra Pradesh

Department Vision

To create technology innovators and leaders who can shape the future of society through technical, research, and entrepreneurial skills with a strong emphasis on interdisciplinary learning and collaborations.

Department Mission

- 1. Use effective teaching and learning pedagogies to enhance technical competency with a focus on computer science and engineering fundamentals.
- 2. Encourage interdisciplinary education and research by promoting the exchange of ideas among a varied community of researchers, educators, and learners.
- 3. Develop a substantial body of knowledge for industrial applications.
- 4. Create an outstanding interdisciplinary research atmosphere.
- 5. Instil students with effective managerial skills, fostering their development into competitive and visionary entrepreneurs.

Program Educational Objectives (PEO)

- 1. Promote design, research, product implementation and services in Artificial Intelligence Engineering through strong technical, communication and entrepreneurial skills.
- 2. Engage to work productively as design and development Engineers, catering to supportive and leadership roles in multidisciplinary domains.
- 3. Possess the skills in AI & ML expertise ready to provide solutions to society's problems locally and globally.
- 4. Engage in active research for professional development in the field of Artificial Intelligence

Mission of the Department to Program Educational Objectives (PEO) Mapping

	PEO 1	PEO 2	PEO 3	PEO 4
Mission Statement 1	3	1	2	2
Mission Statement 2	3	3	2	2
Mission Statement 3	2	1	3	3
Mission Statement 4	3	2	3	3
Mission Statement 5	3	3	2	2

Program Specific Outcomes (PSO)

- 1. Apply, analyze, design and develop efficient and effective mathematical and statistical models and applications in Artificial Intelligence and Machine Learning
- 2. Demonstrate problem solving skills and programming skills to provide innovative solutions to real time industry problems
- 3. Develop research skills, entrepreneurial skills and leadership skills to solve social problems and maintain ethical values.

Mapping Program Educational Objectives (PEO) to Program Learning Outcomes (PLO)

				Progra	am Learn	ing Outco	mes (PLC))					
	POs										PSOs		
PEOs	Engineering Knowledge	Design Development of Solutions	Conduct Investigations of Complex Problems	Program Learning Outcomes (PLO)POSInvestigations ofInvestigations ofComplexComplexComplexComplexProblemsComplexComplexComplexSocietyComplexSociety <th>Communication Skills</th> <th>Lifelong Learning</th> <th>PSO 1</th> <th>PSO 2</th> <th>PSO 3</th>	Communication Skills	Lifelong Learning	PSO 1	PSO 2	PSO 3				
PEO 1	3	3	3	3	2	1	3	2	2	2	3	2	2
PEO 2	3	3	3	3	3	1	3	1	2	2	3	2	3
PEO 3	3	3	3	3	2	3	3	3	3	3	2	3	3
PEO 4	3	3	3	3	3	2	3	2	3	3	3	3	3

Category Wise Credit	Distribution		
Course Sub-Category	Sub-Category Credits	Category Credits	Learning Hours
Ability Enhancement Courses (AEC)		1	
University AEC	0		30
School AEC	1		
Value Added Courses (VAC)		0	
University VAC	0		0
School VAC	0		
Skill Enhancement Courses (SEC)		0	
School SEC	0		
Department SEC	0		0
SEC Elective	0		
Foundation / Interdisciplinary courses (FIC)	- Co	0	
School FIC	0	2	0
Department FIC	0	4	
Core + Core Elective including Specialization (CC)		38	
Core	32		1140
Core Elective (Inc Specialization)	6		
Minor (MC) + Open Elective (OE)	0	0	0
Research / Design / Internship/ Project (RDIP)		26	
Internship / Design Project / Startup / NGO	2		780
Internship / Research / Thesis	24]
	Total	65	1950

Semester wise Course Credit Distribution Under	r Va	riou	s Cat	egor	ries	
Catagory			Se	meste	er	
Category	Ι	Π	Ш	IV	Total	%
Ability Enhancement Courses - AEC	1	0	0	0	1	2
Value Added Courses - VAC	0	0	0	0	0	0
Skill Enhancement Courses - SEC	0	0	0	0	0	0
Foundation / Interdisciplinary Courses - FIC	0	0	0	0	0	0
CC / SE / CE / TE / DE / HSS	19	19	0	0	38	58
Minor / Open Elective - OE	0	0	0	0	0	0
(Research / Design / Industrial Practice / Project / Thesis / Internship) - RDIP	0	2	10	14	26	40
Grand Total	20	21	10	14	65	100

Note: L-T/D-P/Pr and the class allocation is as follows.

- a) Learning Hours : 30 learning hours are equal to 1 credit.
- b) Lecture/Tutorial : 15 contact hours (60 minutes each) per semester are equal to 1 credit.
- c) Discussion : 30 contact hours (60 minutes each) per semester are equal to 1 credit.
- d) Practical : 30 contact hours (60 minutes each) per semester are equal to 1 credit.
- e) Project : 30 project hours (60 minutes each) per semester are equal to 1 credit.

				SEMESTER - I				
S. No	Category	Sub- Category	Course Code	Course Title	L	T/D	P/Pr	С
1	Core	CC	MAT560	Mathematical Foundations for Machine Learning	3	0	0	3
2	Core	CC	AML500	Advanced Algorithms and Analysis	3	0	0	3
3	Core	CC	AML501	Machine Learning Techniques	3	0	0	3
4	Core	CC	AML501L	Machine Learning Techniques Lab	0	0	2	2
5	Core	CC	AML502	Artificial Intelligence and Knowledge Representation	3	0	0	3
6	Core	CC	AML502L	Artificial Intelligence and Knowledge Representation Lab	0	0	2	2
7	AEC	HSS	EGL501	English for Research Paper Writing	1	0	0	1
8	Elective	CE	AML558	Computer Vision	3	0	0	3
			3	Semester Total	16	0	4	20
			- 10					

				SEMESTER - II						
S. No	Category	Sub- Category	Course Code	Course Title	L	T/D	P/Pr	С		
1	Core	CC	AML508	Soft Computing	3	0	0	3		
2	Core	CC	AML504	Data Warehousing and Pattern Mining	3	0	0	3		
3	Core	CC	AML504L	Data Warehousing and Pattern Mining Lab	0	0	2	2		
4	Core	CC	AML505	Deep Learning Techniques	3	0	0	3		
5	Core	CC	AML505L	Deep Learning Techniques Lab	0	0	2	2		
6	Core	CC	AML506	Natural Language Computing	3	0	0	3		
7	Elective	CE	AML553	Information Retrieval	3	0	0	3		
8	RDIP	RDIP	RM101	Research Methodology and IPR	2	0	0	2		
	Semester Total 17 0 4 21									

	SEMESTER - III										
S. No	Category	Sub- Category	Course Code	Course Title	L	T/D	P/Pr	С			
1	RDIP	RDIP	AML580	Project Work-Phase - I	0	0	10	10			
				Semester Total	0	0	10	10			

				SEMESTER - IV				
S. No	Category	Sub- Category	Course Code	Course Title	L	T/D	P/Pr	С
1	RDIP	RDIP	AML581	Project Work-Phase - II	0	0	14	14
				Semester Total	0	0	14	14

			Li	st of Core Electives				
S. No	Category	Sub- Category	Course Code	Course Title	L	T/D	P/Pr	С
1	Elective	CE	AML551	Modelling and Simulation of Digital Systems	3	0	0	3
2	Elective	CE	AML552	Knowledge Engineering and Expert Systems	3	0	0	3
3	Elective	CE	AML553	Information Retrieval	3	0	0	3
4	Elective	CE	AML554	Pattern Recognition	3	0	0	3
5	Elective	CE	AML555	Problem Solving Methods in Artificial Intelligence	3	0	0	3
6	Elective	CE	AML556	Cognitive Systems	3	0	0	3
7	Elective	CE	AML557	Introduction to High Performance Computing	3	0	0	3
8	Elective	CE	AML558	Computer Vision	3	0	0	3
9	Elective	CE	AML559	Number theory and Cryptography	3	0	0	3
10	Elective	CE	AML560	Agent Systems	3	0	0	3
11	Elective	CE	AML561	Artificial Intelligence and Neural Networks	3	0	0	3
12	Elective	CE	AML562	Statistical Modelling for Computer Sciences	3	0	0	3
13	Elective	CE	AML563	Fuzzy Logic and its Applications	3	0	0	3
14	Elective	CE	AML564	Electronic Design Automation	3	0	0	3
L								

Course Code	MAT 560	Course Cotogory	Coro	L	Т	Р	С
Course Coue	MAI 300	Course Category	Core	3	0	0	3
Pre-Requisite Course(s)	Mathematical foundations for Machine learning	Co-Requisite Course(s)	Progressive Course(s)				
Course Offering Department	Mathematics	Professional / Licensing Standards					

Mathematical Foundations for Machine Learning

Course Objectives / Course Learning Rationales (CLRs)

- 1. Introduce the key mathematical concepts at the heart of machine learning.
- 2. Focuses on matrix methods and statistical models and features real-world applications ranging from classification and clustering
- 3. Apply mathematical topics covered, including linear equations, matrix rank, subspaces and others to Machine learning, particularly regression, classification and clustering.
- 4. Gain a deep understanding of the concepts, techniques and mathematical frameworks used by experts in machine learning.

Course Outcomes / Course Learning Outcomes (CLOs)

	At the end of the course the learner will be able to	Bloom's Level	Expected Proficiency Percentage	Expected Attainment Percentage
Outcome 1	Apply the tools of probability to solve problems such as the average case analysis of algorithms or analyzing hashing.	2	70%	60%
Outcome 2	Understand functions of one random variable and functions of multiple random variables with all relevant parameters.	1	70%	65%
Outcome 3	Understand the concepts of Vector space and inner-product spaces.	2	80%	70%
Outcome 4	Understand the concept of dimension reduction and analyse PCA.	4	85%	75%
Outcome 5	Apply predictive analytics on version regression techniques	3	70%	60%

					Progr	am Leai	rning Ou	tcomes ((PLO)				
CLOs	Engineering Knowledge	Design /Development of solutions	Conduct Investigations of Complex Problems	Modern Tool Usage	The Engineer and Society	Environment and Sustainability	Ethics	Individual and Teamwork	Communication	Lifelong Learning	PSO 1	PSO 2	PSO 3
Outcome 1	1	1								3	1	2	2
Outcome 2	1	1								3	3	2	2
Outcome 3	2	2								3	3	3	2
Outcome 4	1	2	2	3						3	3	3	3
Outcome 5	1	2	2	3						3	3	3	3
Average	1	2	2	3						3	3	3	2

Unit	Unit Name	Required	CLOs	References
No.		Contact	Addressed	Used
		Hours		
Unit I	Probability	8		
1	Classical, relative frequency	1	1	1
2	Axiomaticdefinitionsofprobability	1	1	1
3	Additionruleandconditionalprobability	2	1	1
4	Multiplication rule	1	1	1
5	Total Probability	1	1	1
6	Bayes'Theorem, and independence	2	1	1
Unit II	Random variables	12		
7	Discrete, continuous random variables	2	2	1
8	Mixedrandomvariables	1	2	1
9	Probability mass function	1.5	2	1
10	Probability density function	1.5	2	1
11	Cumulative distribution functions	1	2	1
12	Mathematical expectation	2	2	1
13	Moments, Moment generating function	2	2	1
14	Chebyshev'sinequality	1	2	1
Unit III	Stochastics process	6		
15	Introduction to Stochastic Processes (SPs)	1	2	2, 3
16	Stationary Processes	1	2	2,3
17	Discrete-time Markov Chains (DTMCs)	2	2	2, 3
18	Continuous-time Markov Chains (CTMCs)	2	2	2, 3
Unit IV	Linear algebra	10		
19	Finite-dimensional vector spaces over a field	2	3,5	4
20	Linear combination. Linear dependence and independence	2	3,4	4,5
21	Basis and dimension	1	3	4
22	Inner-product spaces	1	3,4	4
23	Linear transformations	2	3	4,5
24	Matrix representation of linear transformations	2	3,4	4
Unit V	Linear algebra	9		
25	Eigenvalues and eigenvectors	3	3,4	4,5
26	Rank and nullity	2	3,4	4,5
27	Inverse and linear transformation	3	3,4	4,5
28	Cayley-Hamilton Theorem	1	3,4	4,5
Total C	Contact Hours		45	

		Co	Continuous Learning Assessments (60%)							
Bloom's I	Level of Cognitive		Theory (30%)	Prostical	Exam (40%)				
Task		CLA-1 (156%)	Mid-1 (20%)	CLA-2 (15%)	CLA -3 (10%)	(0%)	Th			
Laval 1	Remember	50%	70%	50%	40%		30%			
Level I	Understand	30%	/0/0	5070	4070	-	5070			
Level 2	Apply	50%	30%	50%	60%		70%			
Level 2	Analyse	5070	30%	3070	0070	-	/0/0			
Lavel 3	Evaluate									
Levers	Create					-	-			
	Total	100%	100%	100%	100%	-	100%			

Recommended Resources

- 1. Sheldon Ross (2006) AFirstCourseinProbability,7thEdition,Pearson.
- 2. J.Medhi (2009) StochasticProcesses, 3rdEdition, NewAgeInternational..
- 3. S.M.Ross (1996) Stochastic Processes, 2ndEdition, Wiley.
- 4. Stephen H Friedberg, Arnold J Insel, Lawrence E. Spence (2006) Linear Algebra. 4th Edition, Pearson.
- 5. Kenneth MHoffman, RayKunz, LinearAlgebra, 2ndEdition, Pearson.

Other Resources

Course Designers

1. Dr. Damodar Reddy, Department of Mathematics, SRM University-AP

Advanced Algorithms and Analysis

Course Code	A MI 500	Course Cotogory	Corro			Т	Р	С
Course Coue	AML500	Course Category	Core		3	0	0	3
Pre-Requisite Course(s)		Co-Requisite Course(s)	Progressive Course(s)					
Course Offering Department	CSE	Professional / Licensing Standards						

Course Objectives / Course Learning Rationales (CLRs)

- 1. To understand the importance of algorithm analysis.
- 2. To learn algorithmic approach and problem-solving techniques.
- 3. To learn which problem-solving technique to apply for a given problem.
- 4. To learn to solve complex and NP class problems.
- 5. To learn to implement and analyse the complexity of all problem-solving techniques.

Course Outcomes / Course Learning Outcomes (CLOs)

	At the end of the course the learner will be able to	Bloom's Level	Expected Proficiency Percentage	Expected Attainment Percentage
Outcome 1	To understand the importance of algorithms analysis.	1	70 %	65%
Outcome 2	To learn algorithmic approaches and problem-solving techniques.	2	70 %	65%
Outcome 3	To learn which problem-solving techniques to apply for a given problem.	3	70 %	65%
Outcome 4	To learn to solve complex and NP class problems.	3	65 %	60%
Outcome 5	To learn to implement and analyse the complexity of many complex problems.	4	70 %	65%

		Program Learning Outcomes (PLO)											
CLOs	Engineering Knowledge	Design /Development of solutions	Conduct Investigations of Complex Problems	Modern Tool Usage	The Engineer and Society	Environment and Sustainability	Ethics	Individual and Teamwork	Communication	Lifelong Learning	PSO 1	PSO 2	PSO 3
Outcome 1	2	3	1	3						1	3	2	1
Outcome 2	2	3	2	3						2	2	2	2
Outcome 3	2	3	3	3						3	3	3	3
Outcome 4	2	3	3	3						3	2	3	2
Outcome 5	2	3	3	3						3	3	3	3
Average	2	3	3	3						3	3	3	2

Unit	Unit Name	Required Contact	CLOs	References
No.		Hours	Addressed	Used
Unit 1	Introduction to AAA & General Problem Solving techniques	11		
1	Defining Algorithm complexity	1	1	1
2	Basic programming skills	2	1	1
3	Greedy method	2	1,2	1
4	Dynamic programming	2	1,2	1
5	Backtracking technique	2	2	1
6	Branch-and-bound technique	2	2	1
Unit 2	NP class and Randomised algorithms	9		
7	Overview - Class P - Class NP	1	4	1,2
8	NP Hardness	1	4	2,3
9	NP-Completeness	1	4	2,3
10	Cook Levine Theorem	1	4	2
11	Important NP-Complete Problems	2	4	2,3
12	Heuristic algorithms	1	2,3	3,5
13	Randomized algorithms	2	2,3	5
Unit 3	Various complexity analysis techniques (alternatives to Big O)	6		
14	Use of probabilistic inequalities in analysis	1	3.5	2.3
15	Amortized Analysis	1	3.5	2,3
16	Aggregate Method	1	3.5	2.3
17	Accounting Method	1	3 5	2,3
18	Potential Method	1	3 5	2,3
19	competitive analysis & applications using examples.	1	3.5	2.3
Unit 4	Geometric, Network flow and string-matching algorithms	9		_,.
20	Geometric algorithms: Introduction Convex hull	1	2.3	1.2
20	Voronoi diagrams	1	2,3	1,2
21	granh connectivity	1	2,3	1,2
22	Network Flow Algorithms- Maximum Flow	1	2,3	4
23	Cuts- Karger Min Cut Algorithm	1	2,3	4
25	Bipartite Matching - Graph partitioning	1	2,3	4
26	multi-commodity flow	1	2.3	4
27	String matching and document processing algorithms	2	2.3	1.2
Unit 5	Approximation algorithms & Parallel algorithms	10	<u>,</u>	,
28	Approximation algorithms for known NP hard problems	2	3,5	2,3
29	Analysis of Approximation Algorithms	2	3.5	2.3
30	Use of Linear programming and primal dual	1	3,5	2,3
31	Local search heuristics	2	3,5	2,3
<u> </u>	Parallel algorithms: Basic techniques for sorting, searching.		,	,
32	merging, list ranking in PRAMs and Interconnection.	3	3,5	2,3
	Total contact hours		45	I

Bloo	m's Level of	Co	Continuous Learning Assessments (60%)						
Cognitive Task		CLA-1 (15%)	CLA-1 (15%) Mid1 (15%) CLA-2 (10%) CLA-3(15%)		CLA-3(15%)	Exam (40%)			
Level	Remember	70%	60%	50%	40%	40%			
1	Understand								
Level	Apply	30%	40%	50%	50%	60%			
2	Analyse								
Level	Evaluate	-	-	-	-	-			
3	Create								
	Total	100%	100%	100%	100%	100%			

Recommended Resources

- 1. 1.Text Book: Thomas H. Cormen, Charles E. Leiserson, Ronald L.Rivest and Clifford Stein, (2009) Introduction to Algorithms, Third Edition, The MIT, Press.
- 2. 2. Michael T Goodrich and Roberto Tamassia (2005) Competitive Analysis, Cambridge University Press.
- 3. 3. John Wiley and Sons (2002) Algorithm Design: Foundations, Analysis and Internet Examples
- 4. 3.SanjoyDasgupta, Christos Papadimitriou and UmeshVazirani (2009) Algorithms, Tata McGraw-Hill.
- 5. 4.RK Ahuja, TL Magnanti and JB Orlin (1993) Network flows: Theory, Algorithms, and Applications, Prentice Hall Englewood Cliffs.
- 6. 5.Rajeev Motwani, Prabhakar Raghavan (1995) Randomized Algorithms, Cambridge University Press.

Other Resources

Course Designers

1. Dr. Krishna Prasad, Associate Professor, Department of Computer Science & Engineering, SRM University AP

Machine Learning Techniques

Course Code	AMI 501	Course Cotogory	Core			Т	Р	С
Course Code	AML501	Course Category				0	0	3
Pre-Requisite Course(s)		Co-Requisite Course(s)	Progressive Course(s)					
Course Offering Department	CSE	Professional / Licensing Standards						

Course Objectives / Course Learning Rationales (CLRs)

- 1. Introduce Machine Learning and various tasks involved in the principle of machine learning application development.
- 2. Understand a wide variety of regression, classification and clustering algorithms.
- 3. Apply the algorithms to a real-world problem, optimize the models learned and report on the expected accuracy that can be achieved by applying the models.
- 4. Learn the rapid advances in Machine Learning and able to understand the research articles

Course Outcomes / Course Learning Outcomes (CLOs)

	At the end of the course the learner will be able to	Bloom's Level	Expected Proficiency Percentage	Expected Attainment Percentage
Outcome 1	Demonstrate the phases of machine learning application development.	2	75%	75%
Outcome 2	Describe the learning algorithms.	2	75%	70%
Outcome 3	Analuse the techniques to deal with data and its dimensions.	3	70%	65%
Outcome 4	Develop speech recognition, object recognition and classification models using machine learning algorithms	5	70%	65%

		Program Learning Outcomes (PLO)											
CLOs	Engineering Knowledge	Design /Development of solutions	Conduct Investigations of Complex Problems	Modern Tool Usage	The Engineer and Society	Environment and Sustainability	Ethics	Individual and Teamwork	Communication	Lifelong Learning	PSO 1	PSO 2	£ OSd
Outcome 1	3	2	2	2							2		
Outcome 2	3	2	3	3							2		
Outcome 3	3	3	3	3							2		
Outcome 4	3	2	2	2							3		
Average	3	2	3	3							2		

Unit No.	Unit Name	Required Contact Hours	CLOs Addressed	References Used
	UNIT I:	10		
1.	Introduction: Introduction to Machine Learning	1	1	1
2.	Different types of learning	1	1	1
3.	Hypothesis space and inductive bias, Evaluation	1	1	1
4.	Training and test sets, cross-validation	1	3	2
5.	Concept of over fitting, under fitting, Bias and Variance.	1	3	2
6.	Linear Regression: Introduction	1	2	3
7.	Linear Regression: Simple	1	2,4	3
8.	Linear Regression: Multiple	1	2,4	3
9.	Polynomial regression	1	2,4	3
10.	Evaluating regression fit	1	2,4	3
	UNIT II:	12		
11.	Decision tree learning: Introduction, Decision tree representation	1	2,4	1
12.	appropriate problems for decision tree learning, the basic decision tree algorithm	1	2,4	1
13.	hypothesis space search in decision tree learning, inductive bias in decision tree learning,	1	2,4	1
14.	Issues in decision tree learning, Python exercise on Decision Tree.	1	2,4	1
15.	Instance-based Learning: K nearest neighbour, numerical problem	1	2,4	1
16.	the Curse of Dimensionality, Feature selection, forward search, backward search,	1	2,4	1
17.	Univariate and Multivariate feature selection approaches	1	2,4	1
18.	Feature selection techniques	1	2,4	1
19.	Feature reduction: Principal Component Analysis	1	2,4	1
20.	Feature reduction: Principal Component Analysis	1	2,4	1
21.	Python exercise on kNN and PCA	1	2,4	1
22.	Recommender System: Content based system, Collaborative filtering based	1	2,4	4
	UNIT III:	7		
23	Probability and Bayes Learning: Probability and	1	2	1
	classification, Bayesian Learning,	_	_	_
24.	Python exercise on Naïve Bayes, Logistic Regression.	2	2,4	1
25.	Support Vector Machine: Introduction, the Dual formulation,	1	2,4	1
26.	Maximum margin with noise, nonlinear SVM and Kernel function, solution to dual problem	3	2,4	1
	UNIT IV:	8		
27.	Artificial Neural Networks: Introduction,	1	2,4	2
28.	Biological motivation	1	2,4	2
29.	ANN representation	1	2,4	2
30.	appropriate problem for ANN learning,	1	2,4	2
31.	Peceptron	1	2,4	2
32.	multilayer networks	1	2	1
33.	back propagation algorithm	2	2,5	1
	UNIT V:	8		
34.	Ensembles: Introduction, Bagging and boosting, Random Forest	2	2,4	3

35.	Discussion on some research papers	1	2,4	3
36.	Discussion on some research papers	1	2,4	3
37.	Clustering: Introduction, K-mean clustering	2	2,4	3
38.	agglomerative hierarchical clustering,	1	2,4	3
39.	Python exercise on k-mean clustering.	1	2,4	3
	Total contact hours		45	

Bloom's Level of Cognitive Task		Co	End Semester Exam (50%)			
		CLA-1 (10%)	Mid-1 (20%)	CLA-2 (10%)	CLA-3 (10%)	
Level	Remember	30%	30%	30%	30%	30%
1	Understand	3070	3070	3070	3070	3070
Level	Apply	409/	409/	409/	409/	409/
2	Analyse	4070	4070	4076	4076	40%
Level	Evaluate	209/	200/	2004	2004	2004
3	Create	5070	3070	3070	3070	3070
	Total	100%	100%	100%	100%	100%

Recommended Resources

- 1. Tom Mitchell (1997) Machine Learning. First Edition, McGraw-Hill.
- 2. Alpaydin, Ethem (2020) Introduction to machine learning. MIT press.
- 3. Kevin P. Murphy (2012) Machine Learning: A Probabilistic Perspective, MIT Press.
- 4. Christopher Bishop (2007) Pattern Recognition and Machine Learning, Springer.

Other Resources

Course Designers

1. Dr.Jatindra Kumar Dash, Associate Professor, Computer Science and Engineering, SRM University - AP.

Machine Learning Techniques Lab

Course Code	AMI 5011	Course Cotogory	Coro			Т	Р	С
Course Coue	AWLJOIL	Course Category		COLE		0	2	2
Pre-Requisite Course(s)		Co-Requisite Course(s)		Progressive Course(s)				
Course Offering Department	CSE	Professional / Licensing Standards						

Course Objectives / Course Learning Rationales (CLRs)

- 1. Introduce Machine Learning and various tasks involved in the pipeline of machine learning application development.
- 2. Understand a wide variety of regression, classification and clustering algorithms.
- 3. Apply these algorithms to a real-world problem, optimize the models learned and report on the expected accuracy that can be achieved by applying the models.
- 4. Learn the rapid advances in Machine Learning and be able to understand the research articles.

Course Outcomes / Course Learning Outcomes (CLOs)

	At the end of the course the learner will be able to	Bloom's Level	Expected Proficiency Percentage	Expected Attainment Percentage
Outcome 1	Expertise to use the packages NumPy, Pandas and matplotlib	2	75%	75%
Outcome 2	Able to analyse the data and predictions using statistical techniques	2	75%	70%
Outcome 3	Develop classification models for the prediction of class label	2	70%	65%
Outcome 4	Develop perceptron-based classification models for classification	6	70%	65%

		Program Learning Outcomes (PLO)											
CLOs	Engineering Knowledge	Design /Development of solutions	Conduct Investigations of Complex Problems	Modern Tool Usage	The Engineer and Society	Environment and Sustainability	Ethics	Individual and Teamwork	Communication	Lifelong Learning	PSO 1	PSO 2	PSO 3
Outcome 1	3	2	2	3							2		
Outcome 2	3	3	3	3						1	2		
Outcome 3	3	3	3	3						1	2		
Outcome 4	3	2	2	2						1	3		
Average	3	2	3	3				2		1	2		

SI. No.	Unit Name	Required Contact Hours	CLOs Addressed	References Used
1.	Basic exercises on Python Machine Learning Packages such as Numpy, Pandas and matplotlib	4	1	1,2
2.	Given a dataset. Write a program to compute the Covariance, Correlation between a pair of attributes. Extend the program to compute the Covariance Matrix and Correlation Matrix.	2	2	2
3.	Given a set of sample points in N dimensional feature space. Write a program to fit the points with a hyper plane using Linear Regression. Calculate sum of residual error.	2	2	4
4.	Write a program that provides option to compute different distance measures between two points in the N dimensional feature space. Consider some sample datasets for computing distances among sample points.	2	2	4
5.	Write a program to demonstrate the working of the decision tree based ID3 algorithm. Use an appropriate data set for building the decision tree and apply this knowledge to classify a new sample.	2	3	4
6.	Write a program to implement k-Nearest Neighbour algorithm to classify the iris data set. Print both correct and wrong predictions. Python ML library classes can be used for this problem.	2	3	4
7.	Write a program to implement feature reduction using Principle Component Analysis	2	3	4
8.	Write a program to implement the naïve Bayesian classifier for a sample training data set stored as a .CSV file. Compute the accuracy of the classifier, considering few test data sets.	2	3	4
9.	Given a dataset for classification task. Write a program to implement Support Vector Machine and estimate it test performance.	2	3	3
10.	Write a program to implement perceptron for different learning task	2	4	4
11.	Write programs to implement ADALINE and MADALINE for given learning task.	2	4	2
12.	Build an Artificial Neural Network by implementing the Back propagation algorithm and test the same using appropriate data sets.	4	4	2
13.	Write a program to implement K means clustering algorithm. Select your own dataset to test the program. Demonstrate the nature of output with varying value of K.	2	3	2
	Total contact hours		30	·

Bloo	m's Level of	Lab Performance (60%)	Viva (40%)
Level	Remember	30%	30%
1	Understand	5070	5070
Level	Apply	40%	40%
2	Analyse		
Level	Evaluate	30%	30%
3	Create		
	Total	100%	100%

Recommended Resources

- 1. Tom Mitchell (1997) Machine Learning. First Edition, McGraw-Hill.
- 2. Alpaydin, Ethem (2020) Introduction to machine learning. MIT press.
- 3. Kevin P. Murphy (2012) Machine Learning: A Probabilistic Perspective, MIT Press.
- 4. Christopher Bishop (2007) Pattern Recognition and Machine Learning, Springer.

Other Resources

Course Designers

1. Dr.Jatindra Kumar Dash, Associate Professor, Computer Science and Engineering, SRM University - AP.

Artificial Intelligence and Knowledge Representation

Course Code	A MI 502	Course Cotogory	Carra	L	Т	Р	С
Course Code	AML502	Course Category	Core	3	0	0	3
Pre-Requisite Course(s)		Co-Requisite Course(s)	Progressive Course(s)				
Course Offering Department	Computer Science Engineering AI ML	Professional / Licensing Standards					

Course Objectives / Course Learning Rationales (CLRs)

- 1. To develop a foundational understanding of AI principles and techniques.
- 2. To develop problem-solving skills and effective reasoning using AI techniques.
- 3. To learn and apply various knowledge representation techniques in AI systems.
- 4. To apply AI and knowledge representation concepts to solve real-world problems in diverse domains.

Course Outcomes / Course Learning Outcomes (CLOs)

	At the end of the course the learner will be able to	Bloom's Level	Expected Proficiency Percentage	Expected Attainment Percentage
Outcome 1	Identify the Intelligent systems and Approaches.	1	70%	65%
Outcome 2	Discuss the building blocks of AI as presented in terms of intelligent agents.	2	70%	65%
Outcome 3	Formalize the problem as a state space, graph, design heuristics and select amongst search or game-based techniques to solve them.	3	70%	65%
Outcome 4	Develop intelligent algorithms for constraint satisfaction problems and intelligent systems for Game Playing.	4	70%	65%
Outcome 5	Represent logic-based and reinforcement learning techniques to infer and plan given problems.	3	70%	65%

		Program Learning Outcomes (PLO)											
CLOs	Engineering Knowledge	Design /Development of solutions	Conduct Investigations of Complex Problems	Modern Tool Usage	The Engineer and Society	Environment and Sustainability	Ethics	Individual and Teamwork	Communication	Lifelong Learning	PSO 1	PSO 2	PSO 3
Outcome 1	3	2	1	2						3	3	2	1
Outcome 2	3	1	2	2						3	3	2	2
Outcome 3	3	3	2	2						3	3	2	2
Outcome 4	3	3	2	3						3	3	3	2
Outcome 5	3	3	2	3						3	3	3	2
Average	3	2	2	2						3	3	2	2

Unit	Unit Namo	Required Contect	CLOs	Reference
No.	Unit Name	Hours	Addressed	s Used
Unit 1	Introduction	8		
	AI problems	1	1	1, 2
	foundation of AI and history of AI intelligent agents	1	1	1, 2
	Agents and Environments.	1	2	1,2
	The concept of rationality	1	2	1, 2
	The nature of environments	1	5	1, 2
	Problem-solving agents	2	1,2	1
	Problem formulation	1	1, 2	1, 2
Unit 2	Searching	10		
	Searching for solutions	1	1	1, 2
	Uninformed search strategies – Breadth-first search, depth-first		_	
	Search	2	1	1, 2
	Search with partial information (Heuristic search) Greedy best-first	2	1	1, 2
		1	1	1.2
	A* search	1	2.2	1, 2
	Game Flaying: Adversial search	1	2, 3	1, 2
	oattimel decisions in multiplayer games	1	2.4	1, 2
	Alpha Pata pruning Evaluation functions outting of search	1	3,4	1, 2
Unit 3	Knowledge Depresentation	0	5,4	1, 2
Unit 5	Liging Predicate logic	9	2	1234
	representing facts in logic functions and predicates	1	1	1, 2, 3, 4
	Conversion to clause form	1	23	1,2
	Resolution in propositional logic Resolution in predicate logic	1	2,3	1, 2, 3, 1 1 2 3 4
	Unification	1	1	1,2,3,1
	Representing Knowledge Using Rules:	1	2.3	1, 2, 3, 4
	Procedural Versus Declarative knowledge	1	2, 3	1, 2, 3, 4
	Logic Programming.	1	1	1, 2
	Forward versus Backward Reasoning	1	3, 4	1, 2, 3, 4
Unit 4	Learning	10	,	, , ,
	What is learning, Rote learning, Learning by Taking Advice	1	1, 2	1, 2, 3, 4
	Learning in Problem-solving	1	1,2	1, 2,3
	Learning from example: induction	1	2	1, 2, 3, 4
	Explanation-based learning	1	3, 4	1, 2, 3, 4
	Connectionist Models: Hopfield Networks	1	2, 3	1, 2, 3, 4
	Learning in Neural Networks	1	3, 4	1, 2, 3, 4
	Applications of Neural Networks	1	1,2	1, 2,3
	Recurrent Networks	2	3, 4	1, 2, 3, 4
	Connectionist AI and Symbolic AI	1	5	1, 2, 3, 4
Unit 5	Expert System	8		
	Representing and using Domain Knowledge	1	1,2,3	1, 2
	Reasoning with knowledge	2	2,3	1, 2, 3, 4
	Expert System Shells	2	2,3	1, 2, 3, 4
	Support for explanation examples	1	1,2,3,4	1, 2, 3, 4
	Knowledge acquisition-examples	2	1,2,3,4	1, 2, 3, 4
	Total Theory Contact Hours		45	

Bloo Cog	m's Level of gnitive Task	Co	ntinuous Learnin	g Assessments (50	1%)	End Semester Exam (50%)
		CLA-1 (10%)	Mid-1 (15%)	CLA-2 (10%)	Mid -2 (15%)	
Level 1	Remember	30%	30%	30%	30%	30%
	Understand	-				
Level 2	Apply	40%	40%	40%	40%	40%
	Analyse	-				
Level 3	Evaluate	30%	30%	30%	30%	30%
	Create	-				
	Total	100%	100%	100%	100%	100%

Recommended Resources

- 1. Stuart Russel, Peter Norvig, Artificial Intelligence A Modern Approach. Second Edition, PHI/ Pearson Education.
- 2. Kevin Knight, Elaine Rich, B. Shivashankar Nair (2008) Artificial Intelligence, 3rd Edition,
- 3. B. Yagna Narayana, Artificial Neural Networks, PHI.
- 4. E.Rich and K.Knight, Artificial Intelligence, 2nd Edition, (TMH).

Other Resources

- 1. https://onlinecourses.nptel.ac.in/noc20_cs42/preview
- 2. Artificial Intelligence and Expert Systems Patterson PHI.
- 3. Giarrantana/ Riley, Expert Systems: Principles and Programming- Fourth Edn, Thomson.
- 4. Ivan Bratka, PROLOG Programming for Artificial Intelligence. Third Edition Pearson Education.
- 5. Simon Haykin, Neural Networks PHI.
- 6. Patrick Henry Winston., Artificial Intelligence, 3rd Edition, Pearson Edition

Course Designers

1. Prof. Radha Guha, Professor, Computer Science Engineering, SRM University - AP.

Artificial Intelligence and Knowledge Representation Lab

Course Code	A MI 5021	Course Cotogowy	Corro	L	Т	Р	С
Course Code	AMLJUZL	Course Category	Core	0	0	2	2
Pre-Requisite Course(s)		Co-Requisite Course(s)	Progressive Course(s)				
Course Offering Department	Computer Science Engineering AI ML	Professional / Licensing Standards					

Course Objectives / Course Learning Rationales (CLRs)

- 1. To develop a foundational understanding of AI principles and techniques.
- 2. To develop problem-solving skills and effective reasoning using AI techniques.
- 3. To learn and apply various knowledge representation techniques in AI systems.
- 4. To apply AI and knowledge representation concepts to solve real-world problems in diverse domains.

Course Outcomes / Course Learning Outcomes (CLOs)

	At the end of the course the learner will be able to	Bloom's Level	Expected Proficiency Percentage	Expected Attainment Percentage
Outcome 1	Identify the requirements of the problem statement	2	70%	65%
Outcome 2	Apply the knowledge to generate an algorithm	3	70%	65%
Outcome 3	Formalise the problem as a state space, graph, design heuristics and select amongst search or game-based techniques to solve them.	3	70%	65%
Outcome 4	Develop intelligent algorithms for constraint satisfaction problems and intelligent systems for Game Playing.	4	70%	65%
Outcome 5	Represent logic-based and reinforcement learning techniques to infer and plan the given problems.	3	70%	65%

				Pro	ogram I	Learning	g Outco	mes (P	LO)				
CLOs	Engineering Knowledge	Design /Development of solutions	Conduct Investigations of Complex Problems	Modern Tool Usage	The Engineer and Society	Environment and Sustainability	Ethics	Individual and Teamwork	Communication	Lifelong Learning	PSO 1	PSO 2	PSO 3
Outcome 1	3	2	1	2						3	3	2	1
Outcome 2	3	1	2	2						3	3	2	2
Outcome 3	3	3	2	2						3	3	2	2
Outcome 4	3	3	2	3						3	3	3	2
Outcome 5	3	3	2	3						3	3	3	2
Average	3	2	2	2						3	3	2	2

Exp No.	Unit Name	Required Contact Hours	CLOs Addressed	Reference s Used
1	FAMILY TREE	4	1,2,3	2
2	FACTORIAL, FIBONACCI SERIES AND PRIME NUMBER CHECKING	4	1,2,3	1
3	LISTS	4	1,2,3	3
4	EIGHT QUEENS PROBLEM	6	1,2,3,4,5	4
5	TOWER OF HANOI	4	1,2,3,4,5	5
6	MEDICAL DIAGNOSIS EXPERT SYSTEM DESIGN	8	4	6
	Total Theory Contact Hours		30	

Learning Assessment

Question	Ploom's Loval of	Continuous Learning	g Assessments (50%)	End Somostor
Difficulty	Cognitive Task	Lab Performance and Viva (40%)	Record / Observation Note (10%)	Exam (50%)
Loval 1	Remember	50%	40%	50%
Level I	Understand	5070	4070	5070
Loval 2	Apply	500/	609/	500/
Level 2	Analyse	5070	0070	5070
Loval 2	Evaluate			
Level 5	Create			
	Total	100%	100%	100%

Recommended Resources

- 1. Stuart Russel, Peter Norvig, Artificial Intelligence A Modern Approach. Second Edition, PHI/ Pearson Education.
- 2. Kevin Knight, Elaine Rich, B. Shivashankar Nair (2008) Artificial Intelligence, 3rd Edition.
- 3. B. Yagna Narayana, Artificial Neural Networks, PHI.
- 4. E.Rich and K.Knight, Artificial Intelligence, 2nd Edition, (TMH). Artificial Intelligence and Expert Systems Patterson PHI.
- 5. Giarrantana/ Riley, Expert Systems: Principles and Programming- Fourth Edn, Thomson.

Other Resources

1. https://onlinecourses.nptel.ac.in/noc20_cs42/preview

Course Designers

1. Prof. Radha Guha, Professor, Computer Science Engineering, SRM University - AP.

English for Research Paper Writing

Course Code	ECI 501	Course Cotogowy	HCC		L	Т	Р	С
Course Code	EGL501	Course Category	пээ		1	0	0	1
Pre-Requisite Course(s)		Co-Requisite Course(s)		Progressive Course(s)				
Course Offering Department	English	Professional / Licensing Standards						

Course Objectives / Course Learning Rationales (CLRs)

- 1. Understand the Structure of a Research Paper
- 2. Familiarize students with the different types of research & methodologies.
- 3. Develop fundamental proofreading skills to identify and correct common grammatical errors.
- 4. Guide students in creating clear thesis statements and research questions to shape their papers.

Course Outcomes / Course Learning Outcomes (CLOs)

	At the end of the course the learner will be able to	Bloom's Level	Expected Proficiency Percentage	Expected Attainment Percentage
0.4	Identify and recall the key components of a research paper, including	1.2	750/	750/
Outcome I	conclusions.	1,2	/3%	/5%
Outcome 2	Interpret the structure and organisation of research papers, recognising each section's role in conveying information.	2	75%	75%
Outcome 3	Analyse the effectiveness of thesis statements and research questions in guiding the development of a research paper.	3	75%	75%
Outcome 4	Generate clear and concise sentences, paragraphs, and sections that conform to academic writing standards.	3	75%	75%

		Program Learning Outcomes (PLO)											
CLOs	Engineering Knowledge	Design /Development of solutions	Conduct Investigations of Complex Problems	Modern Tool Usage	The Engineer and Society	Environment and Sustainability	Ethics	Individual and Teamwork	Communication	Lifelong Learning	PSO 1	PSO 2	PSO 3
Outcome 1			1	1			3	3	3	3			
Outcome 2			1	1			3	3	3	3			
Outcome 3			1	1			3	3	3	3			
Outcome 4			1	1			3	3	3	3			
Average			1	1			3	3	3	3			

Unit No.	Unit Nome	Required Contact	CLOs	References
Unit No.	Unit Name	Hours	Addressed	Used
Unit 1	Planning & Preparation	3		
	What is research & the need for research	1	1,2	1,2
	Planning a manuscript	2	1,2	1,2
			1	1,2
Unit 2	The Key to Good Writing	3		
	Structuring a paragraph	2	1,2	1,2
	Sequencing a paragraph	1	1,2	1,2
Unit 3	Being Concise	3	1,2	1,2
	The steps to being concise	2	1,2	1,2
	Redundancy Vs Conciseness	1	1,2	1,2
Unit 4	The Basic Components	3		
	Abstract & Introduction	2	3	1,2
	Basic Formats	1	1,2	1,2
			1,3	1,2
Unit 5	Practical Implementation	3		
	Presentation of a paper	3	1,2,3,4	1,2
	Total Contact Hours		15	

Learning Assessment

Diag	m'a Loval of		Co	ntinuous	Learnin	g Assessn	nents (50)%)		End Se	mester
	mitiyo Tosk	CLA-1	(10%)	CLA-2	CLA -2 (10%)		CLA-3 (15%)		(15%)	Exam (50%)	
Cug	ginuve rask	Th	Prac	Th	Prac	Th	Prac	Th	Prac	Th	Prac
Level	Remember	30%		20%		30%		50%		50%	
1	Understand										
Level	Apply	70%		80%		70%		50%		50%	
2	Analyse										
Level	Evaluate										
3	Create										
Total		100%		100%		100%		100%		100%	

Recommended Resources

- 1. Wallwork Adrian. (2016). English for Writing Research Papers. New York: Springer.
- 2. Dudley Evans, T. (1998). Developments in English for Specific Purposes: A multidisciplinary approach. U.K: Cambridge University Press
- 3. Other Resources
- 4. Hutchinson, T., & Waters, A. (1987). English for Specific Purposes: A learner-centered approach. U.K: Cambridge University Press
- 5. Raman, Meenakshi, and Sangeetha Sharma. (2008). Technical Communication: English Skills for Engineers. New Delhi: Oxford University Press
- 6. Trimble, Louis. English for Science and Technology A Discourse Approach. (1985). Cambridge: Cambridge University Press
- 7. Williams, Phil. Advanced Writing Skills for Students of English. (2018). Brighton: Rumian Publishing.
- 8. Wilson, Paige and Teresa Ferster Glazier. (2013). The Least You Should Know About English: Writing Skills, Form C (11th Edition). Boston: Cengage Learning.

Other Resources

Course Designers

1. Dr. Srabani Basu

Computer Vision

Course Code	A MI 558	Course Cotogony	CE]	L	Т	Р	С
Course Coue	AML556	Course Category	CE		3	0	0	3
Pre-Requisite Course(s)		Co-Requisite Course(s)	Progressive Course(s)					
Course Offering Department	Computer Science Engineering AI ML	Professional / Licensing Standards						

Course Objectives / Course Learning Rationales (CLRs)

- 1. Introduces Computer vision elements, including image, graphics, sound, and video components.
- 2. To learn the fundamentals of computer vision and a real environment.
- 3. To gain knowledge over accessing and modification of multimedia content in a real-world scenario

Course Outcomes / Course Learning Outcomes (CLOs)

	At the end of the course the learner will be able to	Bloom's Level	Expected Proficiency Percentage	Expected Attainment Percentage
Outcome 1	Describe what Computer Vision is and the skill sets needed to be a Computer Vision professional.	3	70%	65%
Outcome 2	Apply basic tools (plots, graphs, summary statistics) to perform Computer Vision tasks.	3	70%	65%
Outcome 3	Describe the Computer Vision Process and how it works.	3	70%	65%
Outcome 4	Apply Computer Vision in different case studies.	6	70%	65%

		Program Learning Outcomes (PLO)											
CLOs	Engineering Knowledge	Design /Development of solutions	Conduct Investigations of Complex Problems	Modern Tool Usage	The Engineer and Society	Environment and Sustainability	Ethics	Individual and Teamwork	Communication	Lifelong Learning	PSO 1	PSO 2	PSO 3
Outcome 1	3	2	1	2						3	3	2	1
Outcome 2	3	1	2	2						3	3	2	2
Outcome 3	3	3	2	2						3	3	2	2
Outcome 4	3	3	2	3						3	3	3	2
Outcome 5	3	2	2	2						3	3	2	2
Average	3	2	1	2						3	3	2	1

Unit		Required	CLOs	References		
No.	Unit Name	Contact	Addressed	Used		
110.		Hours	1 iun coocu	estu		
Unit 1	UNIT I: Introduction	9				
	Digital Image Formation and low-level processing:	1	1	1, 2		
	Overview and State-of-the-art Fundamentals of Image	1	1	1		
	Formation,	-	-	-		
	Transformation: Orthogonal, Euclidean, Affine, Projective,	1	1	1, 2		
	etc;			,		
	Fourier Transform, Convolution and Filtering,	2	1	1,2		
	Image Enhancement, Restoration, Histogram Processing	3	1	1,2		
	introduction to computer vision.	1	1	1,2		
Unit 2	Feature	9				
	Feature Extraction: Shape, histogram, color, spectral, texture	2	1,2	1		
	Feature analysis, feature vectors, distance /similarity	1	12	1		
	measures, data preprocessing	1	1,2	1		
	Edges - Canny, LOG, DOG;	2	1,2	1		
	Scale-Space Analysis- Image Pyramids and Gaussian derivative filters	2	1,2	1,2		
	Gabor Filters and DWT; Line detectors (Hough Transform),	1	1.2	1.2		
	Orientation Histogram	-	,	,		
	SIFT, SURF, GLOH, Corners - Harris and Hessian Affine.	1	1,2	1,2		
Unit 3	3D modelling	9				
	Depth estimation and Multi-camera views: Perspective	1	2	1,2		
	Homography, Rectification, DLT, RANSAC,	2	2	1,2		
	3-D reconstruction framework; Binocular Stereopsis:	2	2	1,2		
	Camera and Epipolar Geometry; Auto-calibration.	1	2	1,2		
	Image Segmentation: Region Growing, Edge Based	1	2	1,2		
	approaches to segmentation,					
	Graph-Cut, Mean-Shift, MRFs, Texture Segmentation, Object	2	2	1,2		
TT:4 4	detection.	0				
Unit 4	SD transformation	9	2	1.2		
	Motion Analysis: Optical Flow	2	3	1,2		
	RL1, Spatio-Temporal Analysis	3	3	1,2		
	Background Subtraction and Modeling,	2	3	1,2		
Unit 5	Different Applications	2	3	1,2		
Unit 5	Shape from V: Light at Surfaces	7	4	2		
	Shape from X: Light at Surfaces	3	4	2		
	Shape from Taxture color motion and adapt Alled	1	4	2		
	estimation	3	4	2		
	Photometric Stereo; Phong Model; Reflectance Map.	2	4	2		
	Total contact hours	45				

Bloom's Level of Cognitive Task		C	End Semester Exam (50%)			
		CLA-1 (15%)				
Level	Remember	30%	30%	30%	30%	30%
1	Understand					
Level	Apply	40%	40%	40%	40%	40%
2	Analyse					
Level	Evaluate	30%	30%	30%	30%	30%
3	Create					
	Total	100%	100%	100%	100%	100%

Recommended Resources

- 1. Richard Szeliski (2011)Computer Vision: Algorithms and Applications, Springer-Verlag London Limited..
- 2. Richard Hartley and Andrew Zisserman (2004) Multiple View Geometry in Computer Vision, Second Edition, Cambridge University Press.

Other Resources

- 1. D. A. Forsyth, J. Ponce (2003)Computer Vision: A Modern Approach, Pearson Education,.
- 2. R.C. Gonzalez and R.E. Woods (1992) Digital Image Processing, Addison-Wesley..
- 3. K. Fukunaga (1990) Introduction to Statistical Pattern Recognition, Second Edition, Academic Press.

Course Designers

1. Dr.Shuvendu Rana, Assistant Professor, Computer Science Engineering, SRM University - AP

Soft Computing

Course Code	A MI 508	Course Cotogowy	Como	Carro			Р	С
Course Code	AWIL500	Course Category	Core		3	0	0	3
Pre-Requisite Course(s)		Co-Requisite Course(s)	Progressive Course(s)					
Course Offering Department	CSE	Professional / Licensing Standards						

Course Objectives / Course Learning Rationales (CLRs)

- 1. Understand the fundamental theory and concepts of neural networks, Identify different neural network architectures, algorithms, applications and their limitations.
- 2. Understand appropriate learning rules for each of the architectures and learn several neural network paradigms and its applications.
- 3. Comprehend the fuzzy logic and the concept of fuzziness involved in various systems and fuzzy set theory.
- 4. Understand the concepts of fuzzy sets, knowledge representation using fuzzy rules, approximate reasoning, fuzzy inference systems, and fuzzy logic.
- 5. Understand the Genetic Algorithm and able to identify the application area.
- 6. Understand soft computing techniques and their role in problem solving. Reveal different applications of these models to solve engineering and other problems.

Course Outcomes / Course Learning Outcomes (CLOs)

	At the end of the course the learner will be able to	Bloom's Level	Expected Proficiency Percentage	Expected Attainment Percentage
Outcome 1	Demonstrate the Soft Computing and Artificial Neural Networks model	3	90%	75%
Outcome 2	Describe the evolutionary computation concepts and paradigms	2	70%	65%
Outcome 3	Apply the Neural Network Concepts and Paradigms	3	80%	75%
Outcome 4	Apply the Fuzzy Systems concepts and paradigms	3	80%	75%
Outcome 5	Design solutions using genetic algorithms and compare them with traditional approaches to a given problem.	5	65%	60%

		Program Learning Outcomes (PLO)											
CLOs	Engineering Knowledge	Design /Development of solutions	Conduct Investigations of Complex Problems	Modern Tool Usage	The Engineer and Society	Environment and Sustainability	Ethics	Individual and Teamwork	Communication	Lifelong Learning	PSO 1	2 OS4	PSO 3
Outcome 1	3	2	2	2							2		
Outcome 2	3	2	3	3							2		
Outcome 3	3	3	3	3							2		
Outcome 4	3	2	2	2							3		
Outcome 5	3	2	3	2							3		
Course Average	3	2	3	3							2		

Unit No.	Unit Name	Required Contact Hours	CLOs Addressed	References Used
Unit I	Introduction to Soft Computing, ANN	9		
	What is computational intelligence?- Biological basis for			
	neural networks- Biological versus Artificial neural	1	1	1
	networks			
	Biological basis for evolutionary computation	1	1,2	1
	Behavioral motivations for fuzzy logic	1	1	1,3
	Myths about computational intelligence- Computational	1	2	13
	intelligence application areas	1	2	1,5
	Evolutionary computation	1	1	1
	computational intelligence-Adoption, Types, self-	1	1.2	1
	organisation and evolution	1	1,2	-
	Historical views of computational intelligence	1	1,2	1
	Computational intelligence and Soft computing versus	1	1.2	1
	Artificial intelligence.	Ĩ	1,2	-
	Hard computing	1	2,5	1
Unit II	Evolutionary computation concepts and paradigms	9		
	History of Evolutionary Computation & overview	1	2	1,3
	Genetic algorithms, Evolutionary programming &	1	2	1.3
	strategies	-	-	-,,,,
	Genetic programming	1	2	1,3
	Particle swarm optimisation	1	2	1,3
	Evolutionary computation implementations-	1	2	13
	Implementation issues	1	2	1,5
	Genetic algorithm implementation	2	2	1,3
	Particle swarm optimisation implementation.	2	2,5	1,3
Unit III	Neural Network Concepts and Paradigms	9		
	What are Neural Networks? Why they are useful	1	3	2
	Neural network components and terminology-Topologies	1	3	2
	Adaptation, Comparing neural networks	1	3	2
	other information Processing methods	1	3	2,3
	Stochastic- Kalman filters	1	3	2,3
	Linear and Nonlinear regression - Correlation	1	3	2,3
	Bayes classification	1	3,5	2,3
	Vector quantisation	1	3	2,3
	Radial basis functions - Preprocessing - Post-processing.	1	3,5	2,3
Unit IV	Fuzzy Systems concepts and paradigms	9		
	Fuzzy sets and Fuzzy logic	2	4	3,4
	Approximate reasoning	2	4	3
	Developing a fuzzy controller	2	4	3
	Fuzzy rule system implementation	3	4	3
Unit V	Performance Metrics	9		
	General issues	1	4	2,3
	Partitioning the patterns for training, testing, and	2	2	1.3
	validation- Cross-validation		_	-,-
	Fitness and fitness functions - Parametric and	1	3.4	2.3
	nonparametric statistics	-	- ,	,-
	Evolutionary algorithm effectiveness metrics	1	1,4	2,3
	Receiver operating characteristic curves	1	4,5	2,3
	Computational intelligence tools for explanation facilities	1	3,4	2,3
	Case Studies for implementation of practical applications	2	5	3
	in computational intelligence			
	Total contact hours		45	

Bloom's Level of Cognitive Task		Co	Continuous Learning Assessments (50%)						
		CLA-1 (15%)	Mid-1 (15%)	CLA-2 (10%)	CLA-3 (10%)				
Level	Remember	200/	200/	200/	200/	200/			
1	Understand	50%	50%	50%	50%	50%			
Level	Apply	40%	40%	40%	40%	40%			
2	Analyse	4070	4070	4070	4070	4070			
Level	Evaluate	209/	2004	2004	200/	2004			
3	Create	5070	3070	30%	5070	5070			
	Total	100%	100%	100%	100%	100%			

Recommended Resources

- 1. Russell C. Eberhart and Yuhui Shi (2007) Computational Intelligence: concepts to implementations. Morgan Kaufmann Publishers is an imprint of Elsevier.
- 2. Andries P. Engelbrecht (2007) Computational Intelligence: An Introduction, Second Edition. Wiley..
- 3. John Fulcher and Lakshmi C. Jain (2007) Computational Intelligence: A compendium, Springer.
- 4. David B. Fogel and Charles J. Robinson (2003) Computational Intelligence: The experts speak. Wiley Intersciece.

Other Resources

Course Designers

1. Dr.Jatindra Kumar Dash, Associate Professor, Computer Science and Engineering, SRM University - AP.

Data Warehousing and Pattern Mining

Course Code	AMI 504	Course Cotogory	Carra		L	Т	Р	С
Course Coue	ANILJUH	Course Category	Core			0	0	3
Pre-Requisite Course(s)		Co-Requisite Course(s)	Progressive Course(s)					
Course Offering Department	CSE	Professional / Licensing Standards						

Course Objectives / Course Learning Rationales (CLRs)

- 1. To introduce the basic concepts of Data Warehouse and Data Mining techniques.
- 2. Examine the types of data to be mined and apply pre-processing methods to raw data.
- 3. Discover interesting patterns, analyse supervised and unsupervised models, and estimate the accuracy of the algorithms.
- 4. Understand the implement recommendation system using fundamental mathematical and algorithmic ingredients.
- 5. Understand the use of data visualisation tool.

Course Outcomes / Course Learning Outcomes (CLOs)

	At the end of the course the learner will be able to	Bloom's Level	Expected Proficiency Percentage	Expected Attainment Percentage
Outcome 1	Identify methods to pre-process the real-world data to make it	2	75%	70%
	suitable for various data mining algorithms.			
Outcome 2	Implement models to measure interesting patterns from different	5	75%	70%
Outcome 2	kinds of databases.	5		
	Design, develop and model various techniques such as clustering,		70%	60%
Outcome 3	classification, association finding, feature selection and visualisation	2		
Outcome 5	to real-world data for public health and safety and the cultural,	3		
	societal, and environmental considerations.			
	Acquire real world data from different sources to build		70%	60%
Outcome 4	Recommendation Systems as well as represent knowledge using	4		
	Visualization tools.			

		Program Learning Outcomes (PLO)											
CLOs	Engineering Knowledge	Design /Development of solutions	Conduct Investigations of Complex Problems	Modern Tool Usage	The Engineer and Society	Environment and Sustainability	Ethics	Individual and Teamwork	Communication	Lifelong Learning	PSO 1	PSO 2	PSO 3
Outcome 1	1	2		1									1
Outcome 2	2	2	3	3									3
Outcome 3	2	2	3	3									3
Outcome 4	2	2	2	3									3
Outcome 5	2	2	3	3									3
Average	1	2		1									1

Unit	Unit Name	Required Contact	CLOs	Reference
No.	Unit ivanic	Hours	Addressed	s Used
Unit 1		11		
	Data warehouse concepts	2	1	1
	Data warehouse modelling	1	1	1.2
-	Data Cube and OLAP	1	1	1.2
-	Schemas for multidimensional data models	1	1	1,2
-	Concept hierarchy measures and indexing techniques	1	1	1.2
	Data warehouse – design and usage	1	1	1,2
	Implementation and the architectural components	1	1	1,2
	Role of Metadata, Dimensional Modelling	1	1	1,2
	Data Extraction. Transformation and Loading	1	1	1.2
	Data quality	1	1	1,2
Unit 2		11	-	-,-
0 111 2	Classification and prediction introduction	1	1	1.2.3
	Decision tree induction. Bayes, Rule based etc methods	2	1.2	1,2,3
	Advanced classification methods	2	1,2	1,2,3
	Cluster Analysis – Types of Data in Cluster Analysis	1	1.2	1.2.3
	Partitioning methods	1	1,2	1,2,3
	Hierarchical Methods	1	1.2	1.2.3
	Transactional Patterns	1	1.2	1.2.3
	Temporal based frequent patterns	1	1.2	1.2.3
	OLAP Implementation	1	1.2	1.2.3
Unit 3		9	- ;	-,-,-
	Mining Data Streams	1	2	1.2.3
	Methodologies for stream data processing and stream data		_	, , , , ,
	systems	2	2	1,2,3
	Frequent pattern mining in stream data	1	2	1,2,3
	Sequential Pattern Mining in Data Streams	1	1,2	1,2,3
	Classification of dynamic data streams	1	2,3	1,2,3
	Mining Time series	1	2,3	1,2,3
	Mining Sequence Patterns in Transactional Databases	1	2,3	1,2,3
	Mining Sequence Patterns in Biological Data	1	2,3	1,2,3
Unit 4		9		
	Web Mining	1	3	1,2,3,4
	Mining the web page layout structure	2	3,4	1,2,3,4
	Mining web link structure	1	3,4	1,2,3
	Multimedia web mining	1	3,4	1,2,3
	Automatic classification of web documents	1	3,4	1,2,3
	Web usage mining	1	3,4	1,2,3
	Distributed Data Mining	2	3,4	1,2,3
Unit 5	-	5		
	Data mining Applications	1	4	1,2,3,4
	Advanced Techniques	1	4	1,2,3,4
	Mining Text and Web data	1	4	1,2,3,4
	Mining Spatiotemporal patterns	1	4	1,2,3,4
	Mining Trajectory Patterns	1	4	1,2,5,6
	Multivariate Time Series (MVTS) Mining	7	4	1,2,3,7
	Total		45	•

Bloom's Level of Cognitive Task		Co	Continuous Learning Assessments (50%)						
		CLA-1 (10%)	Mid-1 (15%)	CLA-2 (10%)	CLA-3 (15%)	Assessments (50%)			
Level	Remember	709/	409/	209/	2004	2004			
1	Understand	/070	40%	3070	3076	5070			
Level	Apply	2004	409/	509/	40%	500/			
2	Analyse	2070	40%	30%	40%	3076			
Level	Evaluate	109/	2004	2094	2004	2094			
3	Create	1070	2070	2070	3076	2070			
	Total	100%	100%	100%	100%	100%			

Recommended Resources

- 1. Jiawei Han and M Kamber (2011) Data Mining Concepts and Techniques, Second Edition, Elsevier Publication.
- 2. Vipin Kumar, Pang-Ning Tan, Michael Steinbach (2006) Introduction to Data Mining , Addison Wesley.
- 3. G Dong and J Pei (2007) Sequence Data Mining, Springer.
- 4. Ralph Kimball, Margy Ross (2013) The Data Warehouse Toolkit, 3rd edition, Publisher: Wiley.
- 5. Jake VanderPlas (2016) Python Data Science Handbook: Essential Tools for Working with Data Paperback
- 6. Kevin P. Murphy (2013) Machine Learning: A Probabilistic Perspective..
- 7. Avrim Blum, John Hopcroft and Ravindran Kannan. Foundations of Data Science.

Other Resources

Course Designers

1. Dr. Rajiv Senapati, Assistant Professor, Department of Computer Science & Engineering, SRM University AP

Data Warehousing and Pattern Mining Lab

Course Code	A MI 504I	Course Cotogowy	Carro	L	Т	Р	С
Course Coue	AML504L	Course Category	Core	0	0	2	2
Pre-Requisite Course(s)		Co-Requisite Course(s)	Progressive Course(s)				
Course Offering Department	CSE AI ML	Professional / Licensing Standards					

Course Objectives / Course Learning Rationales (CLRs)

- 1. To introduce the basic concepts of Data Warehouse and Data Mining techniques.
- 2. Examine the types of data to be mined and apply pre-processing methods to raw data.
- 3. Discover interesting patterns, analyze supervised and unsupervised models, and estimate the accuracy of the algorithms.
- 4. Understand the implement recommendation system using fundamental mathematical and algorithmic ingredients.
- 5. Understand the use of data visualisation tools.

Course Outcomes / Course Learning Outcomes (CLOs)

	At the end of the course the learner will be able to	Bloom's Level	Expected Proficiency Percentage	Expected Attainment Percentage
Outcome 1	Identify methods to pre-process the real-world data to make it	2	75%	70%
	suitable for various data mining algorithms.			
Outcome 2	Implement models to measure interesting patterns from different	5	75%	70%
Outcome 2	kinds of databases.	5		
	Design, develop and model various techniques such as clustering,		70%	60%
Outcome 3	classification, association finding, feature selection and visualization	2		
Outcome 5	to real-world data for public health and safety and the cultural,	3		
	societal, and environmental considerations.			
	Acquire real-world data from different sources to build		70%	60%
Outcome 4	Recommendation Systems and represent knowledge using	4		
	Visualization tools.			

		Program Learning Outcomes (PLO)											
CLOs	Engineering Knowledge	Design /Development of solutions	Conduct Investigations of Complex Problems	Modern Tool Usage	The Engineer and Society	Environment and Sustainability	Ethics	Individual and Teamwork	Communication	Lifelong Learning	PSO 1	PSO 2	PSO 3
Outcome 1	1	2		1									1
Outcome 2	2	2	3	3									3
Outcome 3	2	2	3	3									3
Outcome 4	2	2	2	3									3
Average	2	2	3	3									3

		Required	CLOs	Reference	
Unit No.	Unit Name	Contact	Addressed	s Used	
		Hours		5 0500	
Unit 1		9			
	Lab Experiment 1: Basic exercises on Python Packages such	5	1	1,2	
	as Numpy, Pandas and matplotlib.				
	Lab Experiment 2: Given a dataset. Write a program to	4	3	5	
	compute the Mean, Median, Mode, Standard deviation,				
	Covariance, Correlation between a pair of attributes.				
Unit 2		9			
	Lab Experiment 3: Write a query to implementation OLAP	3	2	3,4	
	operations in a data cube.				
	Lab Experiment 4: Write a program to implement data pre-	3	2	6	
	processing techniques.				
	Lab Experiment 5: Write a program that provides option to	3	2	6	
	compute different distance measures between two points in				
	the N dimensional feature space. Consider some sample				
	datasets for computing distances among				
	sample points.				
Unit 3		9			
	Lab Experiment 6: Write a program that provides option to	3	3	6	
	compute different distance measures between two points in the				
	N dimensional feature space. Consider some sample datasets				
	for computing distances among sample points.				
	Lab Experiment 7: Write a program to demonstrate the	2	3	6	
	working of APRIORI algorithm. Use an appropriate data set to				
	generate frequent patterns.				
	Lab Experiment 8: Write a program to demonstrate the	2	3	6	
	working of stream mining algorithm. Use an appropriate data				
	set to generate frequent patterns.				
	Lab Experiment 9: Write a program to implement K means	2	3	6	
	clustering algorithm. Select your own dataset to test the				
	program. Demonstrate the nature of output with varying value				
	of K.				
Unit 4		9			
	Lab Experiment 10: Write a program to demonstrate web	5	4	7	
	page layout structure, web link structure.			_	
	Lab Experiment 11: Write a program to demonstrate time	4	4	7	
	series and sequence pattern mining considering a suitable				
	dataset.				
Unit 5		9			
	Lab Experiment 12: Write a program based on applications	9	4	5	
	of data mining?				
	Total		45		

		Continuous Lea	rning Assessments (50%)	
Question Difficulty	Bloom's Level of Cognitive Task	Lab Performance (40%)	Record / Observation Note (10%)	End Semester Exam (50%)
Lavel 1	Remember	50%	40%	20%
Level I	Understand	5078	4070	5070
Level 2	Apply	30%	40%	50%
Level 2	Analyse	5070	4070	5070
Level 3	Evaluate	20%	20%	20%
Level 5	Create	2070	2070	2070
	Total	100%	100%	100%

Recommended Resources

- 1. Jiawei Han and M Kamber (2011) Data Mining Concepts and Techniques, Second Edition, Elsevier Publication.
- 2. Vipin Kumar, Pang-Ning Tan, Michael Steinbach (2006) Introduction to Data Mining , Addison Wesley.
- 3. G Dong and J Pei (2007) Sequence Data Mining, Springer.
- 4. Ralph Kimball, Margy Ross (2013) The Data Warehouse Toolkit, 3rd edition, Publisher: Wiley.
- 5. Jake VanderPlas (2016) Python Data Science Handbook: Essential Tools for Working with Data Paperback
- 6. Kevin P. Murphy (2013) Machine Learning: A Probabilistic Perspective.
- 7. Avrim Blum, John Hopcroft and Ravindran Kannan. Foundations of Data Science.

Other Resources

Course Designers

1. Dr. Rajiv Senapati, Assistant Professor, Department of Computer Science & Engineering, SRM University AP

Deep Learning Techniques

Course Code	A MI 505	Course Cotogory	Core	L	Т	Р	С
Course Coue	AME505	Course Category	Core	3	0	0	3
Pre-Requisite Course(s)	AML501 Machine Learning Techniques	Co-Requisite Course(s)	Progressive Course(s)				
Course Offering Department	CSE	Professional / Licensing Standards					

Course Objectives / Course Learning Rationales (CLRs)

- 1. Understand the fundamental concepts of ML/DL, tensor flow, and keras
- 2. Study of different activation functions and ANN.
- 3. Study and application of CNN, and RNN models
- 4. Application of different deep learning concepts.

Course Outcomes / Course Learning Outcomes (CLOs)

	At the end of the course the learner will be able to	Bloom's Level	Expected Proficiency Percentage	Expected Attainment Percentage
Outcome 1	Illustrate the concepts of ML/DL	1	70	68
Outcome 2	Design and implement CNN model	5	70	65
Outcome 3	Design and implement RNN model	5	70	65
Outcome 4	Apply deep learning models to given problems.	3	70	60

		Program Learning Outcomes (PLO)											
CLOs	Engineering Knowledge	Design /Development of solutions	Conduct Investigations of Complex Problems	Modern Tool Usage	The Engineer and Society	Environment and Sustainability	Ethics	Individual and Teamwork	Communication	Lifelong Learning	PSO 1	PSO 2	PSO 3
Outcome 1	1	1	1	2							2	2	
Outcome 2	2	3	2	3							3	2	
Outcome 3	2	3	2	3							2	3	
Outcome 4	2	3	3	3							2	3	
Average	2	3	2	3							2	3	

Unit		Required	CLOs	References
No	Unit Name	Contact	Addressed	Used
110.		Hours	Tuur esseu	Oscu
Unit 1	Introduction:	15		
1	Overview of machine learning	2	1	1
2	Linear classifiers, loss functions	1	1	1
3	Introduction to TensorFlow:	1	1	1
4	Computational Graph, Key highlights, Creating a Graph	2	1	1
5	Regression example	1	1	1
6	Gradient Descent	1	1	1
7	TensorBoard	3	1	1
8	Modularity, Sharing Variables	1	1	1
9	Keras	3	4	3
Unit 2	ACTIVATION FUNCTIONS, PERCEPTRON, ANN	7		
10	Activation Functions: Sigmoid, ReLU, Hyperbolic Fns, Softmax	2	1	1,2
11	Perceptrons: What is a Perceptron, XOR Gate	1	1	1
12	Artificial Neural Networks: Introduction	1	1	2
13	Perceptron Training Rule	1	1	2
14	Gradient Descent Rule	1	1	2
15	Vanishing gradient problem and solution	1	1	2
Unit 3	Convolutional Neural Networks	7		
	Introduction to CNNs	1	1,2	3
	Kernel filter	1	1,2	3
	Principles behind CNNs	1	1,2	3
	Multiple Filters	2	1,2	3
	Problem and solution of under fitting and overfitting	2	1,2	3
Unit 4	Recurrent Neural Networks	8		
	Introduction to RNNs	1	1,3	2
	Unfolded RNNs	1	1,3	2
	Seq2Seq RNNs	1	1,3	2
	LSTM	1	1,3	2
	GRU	2	1,3	2
	Encoder Decoder architectures	2	1,3	2
Unit 5	Deep Learning applications	8		
	Image segmentation	1	4	3
	Self-Driving Cars	1	4	3
	News Aggregation and Fraud News Detection	1	4	3
	Natural Language Processing	1	4	3
	Virtual Assistants	1	4	3
	Entertainment	1	4	3
	Visual Recognition	1	4	3
	Fraud Detection, Healthcare	1	4	3,4
	Total Contact Hours		45	

Bloom's Level of Cognitive Task			(Continuou	s Learnin	g Assessm	ents (50%	b)		End Semester	
		CLA-1 (10%)		Mid-1 (15%)		CLA-2 (10%)		CLA-3 (15%)		Exam (50%)	
		Th	Prac	Th	Prac	Th	Prac	Th	Prac	Th	Prac
Level	Remember	700/		650/		60%		500/		409/	
1	Understand	/070	0370			0070		3070		40%	
Level	Apply	200/		250/		400/		500/		600/	
2	Analyse	30%		5370		40%		30%		00%	
Level	Evaluate										
3	Create										
	Total	100%		100%		100%		100%		100%	

Recommended Resources

- 1. Buduma, Nikhil, and Nicholasn (2017) Locascio. Fundamentals of deep learning: Designing next-generation machine intelligence algorithms. O'Reilly Media, Inc.
- 2. Goodfellow, I., Bengio, Y., and Courville (2016) A., Deep Learning, MIT Press.
- 3. Josh Patterson, Adam Gibson (2017) Deep Learning: A Practitioner's Approach, OReilly.
- 4. Gulli, Antonio, and Sujit Pal (2017) Deep learning with Keras. Packt Publishing Ltd,

Other Resources

- $1. https://www.youtube.com/watch?v=aPfkYu_qiF4&list=PLyqSpQzTE6M9gCgajvQbc68Hk_JKGBAYT$
- 2. https://www.coursera.org/professional-certificates/tensorflow

Course Designers

- 1. Dr. Neeraj Kumar Shamra, Department of CSE, SRM AP
- 2. Expert Reviewers from Institutes of National Importance / Institutes of International Repute
- **3.** Expert Reviewers from Industry.

Deep Learning Techniques Lab

Course Code	A MI 505I	Course Cotogomy	Coro	L	Т	Р	С
Course Coue	AWIL505L	Course Calegory	Core	0	0	2	2
Pre-Requisite Course(s)	AML501L Machine Learning Techniques Lab	Co-Requisite Course(s)	Progressive Course(s)				
Course Offering Department	CSE	Professional / Licensing Standards					

Course Objectives / Course Learning Rationales (CLRs)

- 1. Understand the fundamental concepts of ML/DL, tensor flow, and keras
- 2. Study of different activation functions and ANN.
- 3. Study and application of CNN, and RNN models
- 4. Application of different deep learning concepts.

Course Outcomes / Course Learning Outcomes (CLOs)

	At the end of the course the learner will be able to	Bloom's Level	Expected Proficiency Percentage	Expected Attainment Percentage
Outcome 1	Illustrate the concepts of ML/DL	1	70	68
Outcome 2	Design and implement CNN model	5	70	65
Outcome 3	Design and implement RNN model	5	70	65
Outcome 4	Apply deep learning models to given problems.	3	70	60

		Program Learning Outcomes (PLO)											
CLOs Outcome 1	Engineering Knowledge	Design /Development of solutions	Conduct Investigations of Complex Problems	Modern Tool Usage	The Engineer and Society	Environment and Sustainability	Ethics	Individual and Teamwork	Communication	Lifelong Learning	PSO 1	PSO 2	PSO 3
Outcome 1	1	1	1	2							2	2	
Outcome 2	2	3	2	3							3	2	
Outcome 3	2	3	2	3							2	3	
Outcome 4	2	3	3	3							2	3	
Average	2	3	2	3							2	3	

SI No.	Experiment	Required Contact Hours	CLOs Addressed	References Used
1	Installation and working on python and its different libraries for deep learning (Tensor Flow, NumPy, Kera, Pandas, Matplotlib, etc.)	6	1	1,3
2	Implement a multilayer perceptron (MLP) using Keras with TensorFlow and fine-tune neural network hyperparameters for regression problems (house price prediction).	3	2	1,3
3	To implement an MLP using Keras with TensorFlow for classification problems (heart disease prediction).	3	2	1,2,3
4	To implement a Convolution Neural Network (CNN) for dog/cat classification problems using TensorFlow and Keras.	3	3	1,2,3
5	To implement a Convolution Neural Network (CNN) for multiclass classification problems using TensorFlow and Keras.	3	3	1,2,3
5	To Implement a CNN for object detection in the given image.	3	2	1.2.3
6	Implement a Recurrent Neural Network (RNN) to predict time series data.	3	3	1,3,4
7	Implement a Long Short-Term Memory (LSTM) to predict time series data.	3	3	1,3,4
8	To implement a Seq2Seq Model for Neural Machine Translation in Keras.	3	3	1,3,4
9	To implement an Encoder-Decoder Recurrent neural network model for Neural Machine Translation.	3	3	1,3,4
10	To implement a Gated Recurrent Unit (GRU) for time series data prediction.	3	3	1,3,4
11	Mini project	9	4	1,2,3,4
	Total Contact Hours	45		

Learning Assessment

Bloom's Le	evel of Cognitive Task	Continuous Learning Assessments (50%)	End Semester Exam (50%)
Lavel 1	Remember	30%	40%
Level I	Understand	3070	4070
Lavel 2	Apply	50%	40%
Level 2	Analyse	5078	4070
Laval 2	Evaluate	20%	20%
Level 5	Create		
	Total	100%	100%

Recommended Resources

- 1. Buduma, Nikhil, and Nicholas Locascio (2017) Fundamentals of deep learning: Designing next-generation machine intelligence algorithms. O'Reilly Media, Inc..
- 2. Goodfellow, I., Bengio, Y., and Courville (2016) A., Deep Learning, MIT Press.
- 3. Josh Patterson, Adam Gibson (2017) Deep Learning: A Practitioner's Approach, OReilly.
- 4. Gulli, Antonio, and Sujit Pal (2017) Deep learning with Keras. Packt Publishing Ltd.

Other Resources

- 1. https://www.youtube.com/watch?v=aPfkYu_qiF4&list=PLyqSpQzTE6M9gCgajvQbc68Hk_JKGBAYT
- 2. https://www.coursera.org/professional-certificates/tensorflow

Course Designers

- 1. Dr. Neeraj Kumar Shamra, Department of CSE, SRM AP
- 2. Expert Reviewers from Institutes of National Importance / Institutes of International Repute
- 3. Expert Reviewers from Industry

Natural Language Computing

Course Code	A MI 506	Course Cotogory	Carra	L	Т	Р	С
Course Code	AML500	Course Category	Core	3	0	0	3
Pre-Requisite Course(s)		Co-Requisite Course(s)	Progressive Course(s)				
Course Offering Department	CSE	Professional / Licensing Standards					

Course Objectives / Course Learning Rationales (CLRs)

- 1. Learn the basics of natural language processing and understand its various steps.
- 2. To introduce the fundamentals of language processing from the algorithmic viewpoint.
- 3. To discuss various issues that make natural language processing a hard task.
- 4. To discuss some well-known applications of natural language processing

Course Outcomes / Course Learning Outcomes (CLOs)

	At the end of the course the learner will be able to	Bloom's Level	Expected Proficiency Percentage	Expected Attainment Percentage
Outcome 1	Recall the fundamental concepts of natural language processing.	1	70%	68%
Outcome 2	Demonstrate algorithms for word level and syntactic analysis of textual data.	2	70%	65%
Outcome 3	Develop systems for language processing and information-related tasks using text processing.	3	70%	60%
Outcome 4	Implement systems using natural language generation algorithms and machine translation techniques based on user queries	4	70%	65%

				Pro	ogram]	Learning	g Outco	mes (P	LO)				
CLOs	Engineering Knowledge	Design /Development of solutions	Conduct Investigations of Complex Problems	Modern Tool Usage	The Engineer and Society	Environment and Sustainability	Ethics	Individual and Teamwork	Communication	Lifelong Learning	PSO 1	PSO 2	PSO 3
Outcome 1	2	3	3	2							3	2	
Outcome 2	2	3	3	2							2	2	
Outcome 3	2	3	2	2							2	2	
Outcome 4	3	3	3	2							2	3	
Average	2	3	3	2							2	2	

SL NO	Unit Name	Required Contact Hours	CLOs Addressed	References Used
Unit 1	Introduction:	11		
1	what is Natural Language Processing, the problem of ambiguity and uncertainty in language	2	1	1
2	Ambiguity and uncertainty in language	1	1	1
3	Tuning Set, NLP task in syntax	2	1	1
4	Semantics and pragmatics	2	1	1
5	Application of NLP	1	1,2	1
6	Information extraction and machine translation	1	1,2	1
7	The problem of ambiguity	1	1,2	1
Unit 2	N-gram language modelling	9		
8	The role of language models	1	1	1,2
9	Simple N-gram models	1	1	1,2
10	Estimating parameters and smoothing	1	1	1,2
11	Evaluating language models	1	1,2	1,2
12	POS tagging and sequence labelling .	1	1,2	1,2
13	Lexical syntax and HMM	2	1	1,2
14	HMM chains	1	1,2	1,2
15	Forward and Viterbi modelling	1	1,2	1,2
Unit 3	Syntactic parsing	8		
16	Grammar formalism and tree banks.	2	1,2,3	3
17	Efficiency parsing for CFG	1	1,3	3
18	Statistical and probabilistic parsing	1	1,3	3
19	Lexical PCFGs and Neural shift-reduce dependency parsing	1	1,3	3
20	Hidden Markov Models	1	1,3	3
21	Lexical semantics and word-sense disambiguation, Semantic parsing	2	1,3	3
Unit 4	Maximum entropy classifier	10		
22	Minimum entropy Markov models	2	4	1,3
23	Conditional random fields	1	4	1,3
24	Dirichlet multinomial distribution	1	4	1,3
25	Unsupervised language discovery,	2	4	1,3
26	Information extraction	1	4	1,3
27	Applications of information systems	2	4	1,3
28	Reference resolution	1	4	1,3
Unit 5	Information Extraction and Machine Translation:	7	2.4	1.2.2
29	Named entity recognition and relation extraction.	2	5,4	1,2,3
30	IE using sequence Labelling	1	3,4	1,2,3
31	Basic issues in MT. Statistical translation,	1	3,4	1,2,3
32	word alignment	1	3,4	1,2,3

	Total Contact Hours		45	
34	synchronous grammars.	1	3,4	1,2,3
33	phrase-based translation	1	3,4	1,2,3

			Co	ontinuous	Learnin	g Assessn	nents (50	%)		End Somostor		
Bloom's Level of Cognitive Task		CLA-1 (10%)		Mid-1 (15%)		CLA-2 (15%)		CLA-3 (10%)		Exam (50%)		
		Th	Prac	Th	Prac	Th	Prac	Th	Prac	Th	Prac	
Level	Remember	70%		65%		60%		50%		40%		
1	Understand	/070	0370			0070		3076		40%		
Level	Apply	30%		350%		40%		50%		60%		
2	Analyse	3070		3370		4070		3076		0070		
Level	Evaluate											
3	Create	-										
Total		100%		100%		100%		100%		100%		

Recommended Resources

- James Allen, Natural Language Understanding. The Benajmins/Cummings Publishing Company Inc. 1994. ISBN 0-8053-0334-0
- 2. Manning, Christopher, and Hinrich Schutze (1999) Foundations of statistical natural language processing. MIT press.
- 3. Daniel Jurafsky, James H. Martin, "Speech & language processing", Pearson publications.

Other Resources

- 1. https://youtu.be/02QWRAhGc7g
- 2. https://youtu.be/aeOLjFe256E
- 3. Bird, Steven, Ewan Klein, and Edward Loper (2009) Natural language processing with Python: Analyzing text with the natural language toolkit, O'Reilly Media, Inc.

Course Designers

- 1. Dr. Ashu Abdul, Assistant Professor, Dept. of Computer Science and Engineering, SRM University AP.
- 2. Dr. Jenhui Chen, Professor, Dept. of Computer Science and Information Engineering, Chang Gung University, Taiwan.

Information Retrieval

Course Code	A MI 552	Course Cotogomy	CE	L	Т	Р	С
Course Coue	AML555	Course Category	CE	3	0	0	3
Pre-Requisite Course(s)	MAT 560, CSE 500	Co-Requisite Course(s)	Progressive Course(s)				
Course Offering Department	CSE	Professional / Licensing Standards					

Course Objectives / Course Learning Rationales (CLRs)

- 1. To provide an overview of Information Retrieval.
- 2. To introduce students to insights into several Information retrieval topics such as The boolean retrieval model, Vector space model, Latent semantic indexing, XML and Image retrieval model.
- 3. To provide comprehensive details about various Evaluation methods.
- 4. To provide implementation insight about the topics covered in the course.

Course Outcomes / Course Learning Outcomes (CLOs)

	At the end of the course the learner will be able to	Bloom's Level	Expected Proficiency Percentage	Expected Attainment Percentage
Outcome 1	Students will be able to understand different Information retrieval models.	2	70%	70%
Outcome 2	Students will be able to design and implement different data structures, such as an index, to allow efficient access to the information in large bodies of text.	3	70%	65%
Outcome 3	Students will be able to understand evaluation methods for different kinds of information retrieval models.	4	70%	70%
Outcome 4	Students will be able to apply, evaluate and analyze classification and clustering techniques in information retrieval.	4	70%	65%
Outcome 5	Students will be able to develop a small-scale IR system from scratch.	5	70%	60%

				Pro	ogram l	Learning	g Outco	mes (P	LO)				
CLOs	Engineering Knowledge	Design /Development of solutions	Conduct Investigations of Complex Problems	Modern Tool Usage	The Engineer and Society	Environment and Sustainability	Ethics	Individual and Teamwork	Communication	Lifelong Learning	PSO 1	PSO 2	PSO 3
Outcome 1	2	2	2	2							2	2	1
Outcome 2	2	3	2	2							2	2	2
Outcome 3	2	2	2	2							2	2	2
Outcome 4	2	2	2	2							2	2	2
Outcome 5	3	3	2	2							2	3	2
Average	2	2	2	2							2	2	2

Unit No.	Unit Name	Required Contact Hours	CLOs Addressed	References Used
Unit 1	Introduction:	11		
1	Overview of Information Retrieval, Architecture of a Search Engine	2	1,2,5	1,3
2	Crawling the Web, Document Conversion, Storing the Documents, Detecting Duplicates, Noise Detection and Removal	4	1,3,5	1,3
3	Text Statistics, Document Parsing, Tokenizing, Stopping, Stemming, Phrases, Document Structure, Link Extraction, More detail on Page Rank, Feature Extraction and Named Entity Recognition, Internationalization	5	1,3,5	1
Unit 2	Indexing, Queries and Interfaces	9		
4	Ranking with Indexes Abstract Model of Ranking, Inverted indexes, Map Reduce, Query Processing: Document-at-a-time evaluation, Term-at-a-time evaluation, Optimization techniques, Structured queries, Distributed evaluation, Caching	4	1,3,5	1,2
5	Information Needs and Queries, Query Transformation and Refinement: Stopping and Stemming Revisited, Spell Checking and Query Suggestions, Query Expansion, Relevance Feedback, Context and Personalization. Displaying the Results: Result Pages and Snippets, Advertising and Search, Clustering the Results; Translation; User Behavior Analysis	5	1,3,5	1,2
Unit 3	Retrieval Models	8		
6	Retrieval Models: Overview of Retrieval Models; Boolean Retrieval, The Vector Space Model	3	1,5	1
7	Probabilistic Models: Information Retrieval as Classification, The BM25 Ranking Algorithm	1	1	1
8	Ranking based on Language Models: Query Likelihood Ranking, Relevance Models and Pseudo-Relevance Feedback	1	1	1
9	Complex Queries and Combining Evidence: The Inference Network Model, The Galago Query Language	1	1	1,2
10	Models for Web search	1	1	1,2,3
11	Machine Learning and Information Retrieval: Learning to Rank (Le ToR), Topic Models	1	1	1
Unit 4	Evaluation, Clustering, Classification	10		
12	Evaluating Search Engines: Test collections, Query logs, Effectiveness Metrics: Recall and Precision, Averaging and interpolation, focusing on the top documents. Training, Testing, and Statistics: Significance tests, setting parameter values	3	4,5	1,3
13	Classification	4	4	1,3
14	Clustering	3	4	1,3
Unit 5	Advanced topics	7		
15	Social Search: Networks of People and Search Engines: User tagging, searching within Communities, Filtering and recommending, Meta search	3	1	1,2,3
16	Beyond Bag of Words: Feature-Based Retrieval Models, Term Dependence Models, Question Answering, Pictures, Pictures of	4	1	1,2,3

Total Contact Hours	45	
LSI		
Words, etc., XML Retrieval, Dimensionality Reduction and		

			Continuous Learning Assessments (50%)									
Bloo	m's Level of											
Cognitive Task		CLA-1	A-1 (10%) Mid-1 (15%)		(15%)	CLA-2 (10%)		Mid-2 (15%)				
		Th	Prac	Th	Prac	Th	Prac	Th	Prac	Th	Prac	
Level	Remember	70%		65%		40%		50%		40%		
1	Understand	/0/0	035	0370	570	4070		5070		4070		
Level	Apply	20%		250/		40%		50%		60%		
2	Analyse	3070		3370		4070		5070		0070		
Level	Evaluate					200/						
3 Create						20%						
	Total	100%		100%		100%		100%		100%		

Recommended Resources

- 1. Prabhakar Raghavan, and Hinrich Schuetze (2007) Introduction to Information Retrieval. Christopher D. Manning, Cambridge University Press.
- 2. Bruce Croft, Donald Metzler, and Trevor Strohman (2009) Search Engines: Information Retrieval in Practice. Pearson Education.
- 3. Baeza-Yates Ricardo and BerthierRibeiro-Neto (2011) Modern Information Retrieval. 2nd edition, Addison-Wesley.

Other Resources

- 1. https://web.stanford.edu/class/cs276/
- 2. S. Chakrabarti. Morgan-Kaufmann (2002) Mining the Web.

Course Designers

1. Dr. Niladri Sett, Assistant Professor, Dept. of Computer Science and Engineering, SRM University AP.

Research Methodology and IPR

Course Code	DM101	Course Cotogory	סורוס			Т	Р	С
Course Coue	Code RIVI101 Course Category				2	0	0	2
Pre-Requisite Course(s)		Co-Requisite Course(s)	Progressive Course(s)					
Course Offering Department	Mechanical Engineering	Professional / Licensing Standards						

Course Objectives / Course Learning Rationales (CLRs)

- 1. Developing Research Skills
- 2. Understanding Intellectual Property Rights (IPR)
- 3. Enhancing Ethical Research Practices
- 4. Promoting Effective Communication of Research Results

Course Outcomes / Course Learning Outcomes (CLOs)

	At the end of the course the learner will be able to	Bloom's Level	Expected Proficiency Percentage	Expected Attainment Percentage
Outcome 1	Understand research problem formulation	2	80%	75%
Outcome 2	Analyse research-related information and understand research ethics	2	70%	65%
Outcome 3	Understanding when IPR would take such an important place in the growth of individuals & nations.	3	80%	70%
Outcome 4	Understand that IPR protection provides an incentive to inventors for further research work and investment in R&D.	3	70%	65%

				Pro	ogram l	Learning	g Outco	mes (P	L O)				
CLOs	Engineering Knowledge	Design /Development of solutions	Conduct Investigations of Complex Problems	Modern Tool Usage	The Engineer and Society	Environment and Sustainability	Ethics	Individual and Teamwork	Communication	Lifelong Learning	PS0 1	PSO 2	PSO 3
Outcome 1	2	1	2	2				1		3	2	2	3
Outcome 2	3	2	2	3				2		3	3	2	3
Outcome 3	3	3	3	2				1		3	2	2	3
Outcome 4	3	2	3	2				2		3	3	3	3
Average	3	2	3	2				2		3	3	2	3

Session	Description of Topic	Contact hours	CLOs Addressed	Reference
1.	Unit I	6		
2.	Meaning of research problem, Sources of research problem	2	1	1,3
3.	Criteria Characteristics of a good research problem,	2	1	1,2,3
4.	Errors in selecting a research problem, scope, and objectives of research problem.	2	1	1,2,3
5.				
6.	Unit II	6		
7.	Approaches of investigation of solutions for research problem, data collection,	2	1,2	1,2,3
8.	Analysis, interpretation, Necessary instrumentations.	2	1,2	1,2,3
9.	Effective literature studies approaches, analysis Plagiarism, Research ethics.	2	1,2	1,2,3
10.				
11.	Unit III	6		
12.	Effective technical writing,	2	1,2	1,2
13.	how to write report, Paper Developing a Research Proposal,	2	1,2	1,2
14.	Format of research proposal, a presentation and assessment by a review committee.	2	1,2	1,2
15.				
16.	Unit IV	6		
17.	Nature of Intellectual Property: Patents, Designs, Trade and Copyright. Process of Patenting and Development: technological research,	2	1,2	1,2,3
18.	innovation, patenting, development. International Scenario: International cooperation on Intellectual Property.	2	1,2	1,2,3
19.	Procedure for grants of patents, Patenting under PCT.	1	1,2	1,2,3
20.	Patent Rights: Scope of Patent Rights. Licensing and transfer of technology. Patent information and databases. Geographical Indications.	1	1,2	1,2,3
	Unit V	6		
21.	New Developments in IPR: Administration of Patent System.	2	3,4	4,5
22.	New developments in IPR; IPR of Biological Systems,	2	3,4	4,5
23.	Computer Software etc. Traditional knowledge Case Studies, IPR and IITs.	2	3,4	4,5
	Total Contact Hours	30		

Dlag	m's Lovel of	Con	Continuous Learning Assessments (50%)							
	mitive Teek	CLA-1 (10%)	Mid-1 (15%)	CLA-2 (10%)	Mid-2 (15%)	Exam (50%)				
Cognitive Task		Th	Th	Th	Th	Th				
Level	Remember	4094	50%	2004	2004	2004				
1	Understand	40%	3070	3070	2070	3070				
Level	Apply	600/	500/	700/	800/	700/				
2	Analyse	0070	3070	/0/0	8070	/070				
Level	Evaluate									
3 Create										
Total		100%	100%	100%	100%	100%				

Recommended Resources

- 1. Stuart Melville and Wayne Goddard, "Research methodology: an introduction for science & engineering students' "Wayne Goddard and Stuart Melville, "Research Methodology: An Introduction"
- 2. Ranjit Kumar, (2007) Research Methodology: A Step-by-Step Guide for beginners,, Taylor & Francis Ltd.
- 3. Mayall (1992) Industrial Design,, McGraw Hill.
- 4. Niebel (1974) Product Design, McGraw Hill.
- 5. Asimov (1962) Introduction to Design, Prentice Hall.

Other Resources

Course Designers

- 1. Dr. Manjesh Kumar, Department of Mechanical Engineering, SRM University-AP, Andhra Pradesh.
- 2. Dr. Manas Das, Department of Mechanical Engineering, IIT Guwahati

Project Work-Phase I

Course Code	A MI 590	Course Cotogory	מורוס			Т	Р	С
Course Coue	AML380	Course Category	irse Category RDIP				10	10
Pre-Requisite Course(s)		Co-Requisite Course(s)	Progressive Course(s)					
Course Offering Department	CSE	Professional / Licensing Standards						

Course Objectives / Course Learning Rationales (CLRs)

- 1. To widen the understanding of doing research.
- 2. To facilitate the ideation of a thought.
- 3. To devise and plan ways to execute an idea.
- 4. To learn how to avoid plagiarism and publish one's contribution in the research community.

Course Outcomes / Course Learning Outcomes (CLOs)

	At the end of the course the learner will be able to	Bloom's Level	Expected Proficiency Percentage	Expected Attainment Percentage
Outcome 1	Conceptualise an idea	5	75%	70%
Outcome 2	Devise a plan to do the literature survey on the idea	5	75%	70%
Outcome 3	Formulate the mathematical model for the problem.	4	75%	70%
Outcome 4	Assess the relevance and societal impact of the work	5	70%	65%
Outcome 5	Write a technical paper and report the findings.	3	75%	70%

		Program Learning Outcomes (PLO)											
CLOs	Engineering Knowledge	Design /Development of solutions	Conduct Investigations of Complex Problems	Modern Tool Usage	The Engineer and Society	Environment and Sustainability	Ethics	Individual and Teamwork	Communication	Lifelong Learning	PSO 1	PSO 2	PSO 3
Outcome 1	3			2		1	2	3	2	3	2	2	3
Outcome 2	3	2	3	3	1	1	3	3	3	3	2	1	3
Outcome 3	3	3	3	3	3	3	3	3	3	3	3	3	3
Outcome 4					3	3	3			3	2	1	3
Outcome 5	3	1	3	3			3	3	3	3	3	3	3
Average	3	2	3	3	2	2	3	3	3	3	3	2	3

SL No.	Unit Name	Required Contact hours	CLOs Addressed	References Used
Unit 1	Conception of Idea	35		
	Based on interest conceive an idea	20	1,4	1
	Do a feasibility check of the project	15	1,4	1
Unit 2	Submission of Abstract of the idea	95		
	Literature survey of the related works	85	2	1,2,3,4,5
	Write an abstract of the proposed idea	10	2	1
Unit 3	Formulate the Mathematical model	35		
	Formulate the mathematical model for the considered problem	30	3	1
	Creating timeline for execution of various module of the project.	5	3	1,6
Unit 4	Conducting Simulations and Publish results	135		
	Execution of the various modules of the project and intermediate report submission.	110	3	1
	Initiation of the process for a possible publication.	25	5	2,3,4,5
	Total		300 Hours	

Learning Assessment

Bloom's	Level of	Contin	uous Lea	rning A	ssessments	s (50%)				Extern	al (50%)
Cognitiv	ve Task			Intern	al						
		Th	Prac	Th	Prac	Th	Prac	Th	Prac	Th	Prac
Level 1	Remember										
	Understand										
Level 2	Apply				70%						30%
	Analyse										
Level 3	Evaluate				30%						70%
	Create										
Total					100%						100%

Recommended Resources

- 1. As recommended by Advisor pertaining to student research interest.
- 2. https://ieeexplore.ieee.org/Xplore/home.jsp
- 3. https://www.sciencedirect.com/
- 4. www.springer.com
- 5. https://onlinelibrary.wiley.com/
- **6.** Research Methodology

Other Resources

Course Designers

- 1. Dr. Ashu Abdul, Assistant Professor, CSE, SRM University AP
- 2. Dr. Murali Krishna Enduri, Assistant Professor, CSE, SRM University AP

Project Work-Phase II

Course Code	A MI 591	Course Cotogory	מוכוס	L	Т	Р	С
Course Coue	AMLS81	Course Category	KDIF	0	0	14	14
Pre-Requisite Course(s)		Co-Requisite Course(s)	Progressive Course(s)				
Course Offering Department	CSE	Professional / Licensing Standards					

Course Objectives / Course Learning Rationales (CLRs)

- 1. To widen the understanding of doing research.
- 2. To facilitate the ideation of a thought.
- 3. To devise and plan ways to execute an idea.
- 4. To learn how to avoid plagiarism and publish one's contribution in the research community.

Course Outcomes / Course Learning Outcomes (CLOs)

	At the end of the course the learner will be able to	Bloom's Level	Expected Proficiency Percentage	Expected Attainment Percentage
Outcome 1	Refine the conceptualised idea from Phase 1	5	75%	70%
Outcome 2	Implement the mathematical model formulated in Phase 1.	5	75%	70%
Outcome 3	Conduct the simulation analysis and extract the results	5	75%	70%
Outcome 4	Validate the results obtained with the Literature survey.	5	70%	65%
Outcome 5	Publish and present findings in reputed journals and conferences.	3	75%	70%

				Pro	ogram]	Learning	g Outco	mes (P	LO)										
CLOs	Engineering Knowledge	Design /Development of solutions	Conduct Investigations of Complex Problems	Modern Tool Usage	The Engineer and Society	Environment and Sustainability	Ethics	Individual and Teamwork	Communication	Lifelong Learning	PSO 1	PSO 2	PSO 3						
Outcome 1	3			2		1	2	3	2	3	2	2	3						
Outcome 2	3	2	3	3	1	1	3	3	3	3	2	1	3						
Outcome 3	3	3	3	3	3	3	3	3	3	3	3	3	3						
Outcome 4					3	3	3			3	2	1	3						
Outcome 5	3	1	3	3			3	3	3	3	3	3	3						
Average	3	2	3	3	2	2	3	3	3	3	3	2	3						

Unit No.	Unit Name	Required Contact hours	CLOs Addressed	References Used
Unit 1	Refinement of Idea	60 hours	1	
Unit 2	Implement the Mathematical model	100 hours		
	Optimize the mathematical model for the considered problem	90 hours	2	
	Creating timeline for execution of various module of the project.	10 hours	2	A 11
Unit 3	Conduct the simulation analysis and extract the results	150 hours		All
	Perform the experimental simulations.		3	
Unit 4	Validate the results obtained with Literature survey	70 hours	4	
Unit 5	Publish and present results and finding	50 hours	5	
	Total		420 hours	

Learning Assessment

Bloom's Level of			Co	ntinuou	s Learning	g Assessi	ments (50	%)		Fytor	al (50%)	
	nitive Tesk			Int	ernal					External (50 70)		
Cug	Cognitive Task		Prac	Th	Prac	Th	Prac	Th	Prac	Th	Prac	
Level 1	Remember											
	Understand											
Laval 2	Apply				70%						2004	
Level 2	Analyse				/070						3070	
Laval 3	Evaluate				30%						70%	
Level 3	Create				3070						/0/0	
	Total				100%						100%	

Recommended Resources

- 1. As recommended by Advisor pertaining to student research interest.
- 2. https://ieeexplore.ieee.org/Xplore/home.jsp
- 3. https://www.sciencedirect.com/
- 4. www.springer.com
- 5. https://onlinelibrary.wiley.com/
- **6.** Research Methodology

Other Resources

Course Designers

Knowledge Engineering and Expert Systems

Course Code	A MI 552	Course Cotogory	CE	L	Т	Р	С
Course Coue	AMILJJZ	Course Category	CE	3	0	0	3
Pre-Requisite Course(s)		Co-Requisite Course(s)	Progressive Course(s)				
Course Offering Department	CSE AI ML	Professional / Licensing Standards					

Course Objectives / Course Learning Rationales (CLRs)

- 1. To develop a foundational understanding of Expert Systems.
- 2. To develop problem-solving skills and effective reasoning using Knowledge Engineering.
- 3. To learn and apply various Expert Systems.
- 4. To apply Knowledge Engineering and Expert Systems concepts to solve real-world problems in diverse domains.

Course Outcomes / Course Learning Outcomes (CLOs)

	At the end of the course the learner will be able to	Bloom's Level	Expected Proficiency Percentage	Expected Attainment Percentage
Outcome 1	Identify the Knowledge Engineering Approaches	2	70%	65%
Outcome 2	Analyse the Knowledge Engineering Approaches	4	70%	65%
Outcome 3	Identify the Expert Systems Approaches.	2	70%	65%
Outcome 4	Develop various real-time applications using Expert Systems Concepts	5	70%	65%
Outcome 5	Analyse the strengths and limitations of developed expert systems	4	70%	65%

			Program Learning Outcomes (PLO)										
CLOs	Engineering Knowledge	Design /Development of solutions	Conduct Investigations of Complex Problems	Modern Tool Usage	The Engineer and Society	Environment and Sustainability	Ethics	Individual and Teamwork	Communication	Lifelong Learning	PSO 1	PSO 2	PSO 3
Outcome 1	3	2	1	2						3	3	2	1
Outcome 2	3	1	2	2						3	3	2	2
Outcome 3	3	3	2	2						3	3	2	2
Outcome 4	3	3	2	3						3	3	3	2
Outcome 5	3	2	2	2						3	3	2	2
Average	3	2	1	2						3	3	2	1

Unit	Unit Nama	Required	CLOs	References
No.	Oint Name	Contact Hours	Addressed	Used
Unit 1	Introduction	9		
		2	1	1, 2
	The nature of Expert Systems,	2	1	1.2
	Types of applications of Expert Systems	2	1	1, 2
	relationship of Expert Systems to Artificial Intelligence	1	2	1, 2
	The metric of concerning Distinguishing fortunes of			
	. The nature of expertise Distinguishing features of	1	1, 2	1, 2
	Expert Systems	2	1.2	1.2
	Chaosing on amplication	2	1, 2	1, 2
Unit 2		1	1, 2	1, 2
Unit 2		10		
	Theoretical Foundations What an expert system is	2	1	1, 2
	how it works and how it is built	2	1	1.2
		2	1	1,2
	Basic forms of interence:	2	2.2	1, 2
Unit 2		4 0	2, 3	1, 2
Unit 5		0		
	The representation and manipulation of knowledge in a computer	1	2	1, 2, 3, 4
	Rule-based representations (with backward and forward reasoning);	1	2, 3	1, 2, 3, 4
	logic-based representations (with resolution refutation	1	2, 3	1, 2, 3, 4
	taxonomies; meronomies	1	2, 3	1, 2, 3, 4
	frames (with inheritance and exceptions)	1	2, 3	1, 2, 3, 4
	semantic and partitioned nets (query handling).	1	3, 4	1, 2, 3, 4
Unit 4		10		
	Basic components of an expert system;	1	1, 2	1, 2, 3, 4
	Generation of explanations; Handling of uncertainties;	2	2	1, 2, 3, 4
	Truth Maintenance Systems; Expert System Architectures;	2	3, 4	1, 2, 3, 4
	An analysis of some classic expert systems; Limitations of first generation expert systems	2	2, 3	1, 2, 3, 4
	Deep expert systems	1	3,4	1, 2, 3, 4
	Co-operating expert systems and the blackboard model.	2	3,4	1, 2, 3, 4
Unit 5		8	,	
	Building Expert Systems Methodologies for building expert systems:	2	1,2,3	1, 2,5
	knowledge acquisition and elicitation;	2	1,2,3	1,2,5
	formalisation; representation and evaluation. Knowledge Engineering tools,	2	1,2,3	1,2,5
	Case Study.	2	1,2,3,4	1,2,5
	Total Theory Contact Hours		45	

Diag	Bloom's Level of		Co	ontinuous	Learnin	g Assessm	ents (50	%)		End Se	mester
	mitivo Tosk	CLA-1	(10%)	Mid-1	(15%)	CLA-2 (10%)		Mid-2 (15%)		Exam (50%)	
Cug	Coginerve rask		Prac	Th	Prac	Th	Prac	Th	Prac	Th	Prac
Level	Remember	409/		409/		409/		409/		1.00/	
1	Understand	40%	40%		4070		1070		1070		
Level	Apply	400/		400/		400/		400/		500/	
2	Analyse	40%		40%		40%		40%		30%	
Level	Evaluate	200/		200/		200/		200/		400/	
3	Create	2070		2070		2070		2070		4070	
	Total	100%		100%		100%		100%		100%	

Recommended Resources

- 1. P Jackson (1990) Introduction to Expert Systems, 2nd Edition, Addison Wesley.
- 2. Elaine Rich, Kevin Knight (1991) Artificial Intelligence, 2nd Edition, McGraw-Hill, Inc.
- 3. Jackson. Jean-Louis Lauriere (1990) Problem Solving and Artificial Intelligence, Prentice Hall.
- 4. PROLOG Programming for Artificial Intelligence. Ivan Bratka- Third Edition Pearson Education.
- 5. Neural Networks Simon Haykin PHI
- 6. Artificial Intelligence, 3rd Edition, Patrick Henry Winston., Pearson Edition

Other Resources

Course Designers

1. Dr. Radha Guha, Professor, Computer Science Engineering, SRM University - AP.

Information Retrieval

Course Code	A MI 552	Course Cotogomy	CE	L	Т	Р	С
Course Coue	AML555	Course Category	CE	3	0	0	3
Pre-Requisite Course(s)	MAT 560, CSE 500	Co-Requisite Course(s)	Progressive Course(s)				
Course Offering Department	CSE	Professional / Licensing Standards					

Course Objectives / Course Learning Rationales (CLRs)

- 1. To provide an overview of Information Retrieval.
- 2. To introduce students to insights into several Information retrieval topics such as The boolean retrieval model, Vector space model, Latent semantic indexing, XML and Image retrieval model.
- 3. To provide comprehensive details about various Evaluation methods.
- 4. To provide implementation insight about the topics covered in the course.

Course Outcomes / Course Learning Outcomes (CLOs)

	At the end of the course the learner will be able to	Bloom's Level	Expected Proficiency Percentage	Expected Attainment Percentage
Outcome 1	Students will be able to understand different Information retrieval models.	2	70%	70%
Outcome 2	Students will be able to design and implement different data structures, such as an index, to allow efficient access to the information in large bodies of text.	3	70%	65%
Outcome 3	Students will be able to understand evaluation methods for different kinds of information retrieval models.	4	70%	70%
Outcome 4	Students will be able to apply, evaluate and analyze classification and clustering techniques in information retrieval.	4	70%	65%
Outcome 5	Students will be able to develop a small-scale IR system from scratch.	5	70%	60%

		Program Learning Outcomes (PLO)											
CLOs	Engineering Knowledge	Design /Development of solutions	Conduct Investigations of Complex Problems	Modern Tool Usage	The Engineer and Society	Environment and Sustainability	Ethics	Individual and Teamwork	Communication	Lifelong Learning	PSO 1	PSO 2	PSO 3
Outcome 1	2	2	2	2							2	2	1
Outcome 2	2	3	2	2							2	2	2
Outcome 3	2	2	2	2							2	2	2
Outcome 4	2	2	2	2							2	2	2
Outcome 5	3	3	2	2							2	3	2
Average	2	2	2	2							2	2	2

Unit No.	Unit Name	Required Contact Hours	CLOs Addressed	References Used
Unit 1	Introduction:	11		
1	Overview of Information Retrieval, Architecture of a Search Engine	2	1,2,5	1,3
2	Crawling the Web, Document Conversion, Storing the Documents, Detecting Duplicates, Noise Detection and Removal	4	1,3,5	1,3
3	Text Statistics, Document Parsing, Tokenizing, Stopping, Stemming, Phrases, Document Structure, Link Extraction, More detail on Page Rank, Feature Extraction and Named Entity Recognition, Internationalization	5	1,3,5	1
Unit 2	Indexing, Queries and Interfaces	9		
4	Ranking with Indexes Abstract Model of Ranking, Inverted indexes, Map Reduce, Query Processing: Document-at-a-time evaluation, Term-at-a-time evaluation, Optimization techniques, Structured queries, Distributed evaluation, Caching	4	1,3,5	1,2
5	Information Needs and Queries, Query Transformation and Refinement: Stopping and Stemming Revisited, Spell Checking and Query Suggestions, Query Expansion, Relevance Feedback, Context and Personalization. Displaying the Results: Result Pages and Snippets, Advertising and Search, Clustering the Results; Translation; User Behavior Analysis	5	1,3,5	1,2
Unit 3	Retrieval Models	8		
6	Retrieval Models: Overview of Retrieval Models; Boolean Retrieval, The Vector Space Model	3	1,5	1
7	Probabilistic Models: Information Retrieval as Classification, The BM25 Ranking Algorithm	1	1	1
8	Ranking based on Language Models: Query Likelihood Ranking, Relevance Models and Pseudo-Relevance Feedback	1	1	1
9	Complex Queries and Combining Evidence: The Inference Network Model, The Galago Query Language	1	1	1,2
10	Models for Web search	1	1	1,2,3
11	Machine Learning and Information Retrieval: Learning to Rank (Le ToR), Topic Models	1	1	1
Unit 4	Evaluation, Clustering, Classification	10		
12	Evaluating Search Engines: Test collections, Query logs, Effectiveness Metrics: Recall and Precision, Averaging and interpolation, focusing on the top documents. Training, Testing, and Statistics: Significance tests, setting parameter values	3	4,5	1,3
13	Classification	4	4	1,3
14	Clustering	3	4	1,3
Unit 5	Advanced topics	7		
15	Social Search: Networks of People and Search Engines: User tagging, searching within Communities, Filtering and recommending, Meta search	3	1	1,2,3
16	Beyond Bag of Words: Feature-Based Retrieval Models, Term Dependence Models, Question Answering, Pictures, Pictures of	4	1	1,2,3

Total Contact Hours	45	
LSI		
Words, etc., XML Retrieval, Dimensionality Reduction and		

			Continuous Learning Assessments (50%)								End Semester	
Bloo	m's Level of									Exam (50%)		
Cognitive Task		CLA-1	LA-1 (10%) Mid-1 (15%)		CLA-2 (10%)		Mid-2 (15%)					
		Th	Prac	Th	Prac	Th	Prac	Th	Prac	Th	Prac	
Level	Remember	70%		65%		40%		50%		40%		
1	Understand	/0/0	0370	0370		4070		5070		4070		
Level	Apply	20%		250/		40%		50%		60%		
2	Analyse	3070		3370		4070		5070		0070		
Level	Evaluate					200/						
3	Create					20%						
	Total	100%		100%		100%		100%		100%		

Recommended Resources

- 1. Prabhakar Raghavan, and Hinrich Schuetze (2007) Introduction to Information Retrieval. Christopher D. Manning, Cambridge University Press.
- 2. Bruce Croft, Donald Metzler, and Trevor Strohman (2009) Search Engines: Information Retrieval in Practice. Pearson Education.
- 3. Baeza-Yates Ricardo and BerthierRibeiro-Neto (2011) Modern Information Retrieval. 2nd edition, Addison-Wesley.

Other Resources

- 1. https://web.stanford.edu/class/cs276/
- 2. S. Chakrabarti. Morgan-Kaufmann (2002) Mining the Web.

Course Designers

1. Dr. Niladri Sett, Assistant Professor, Dept. of Computer Science and Engineering, SRM University AP.

Computer Vision

Course Code	4 MI 558	Course Cotogory	CE		L	Т	Р	С
Course Coue	71111000	Course Category	CE		3	0	0	3
Pre-Requisite Course(s)		Co-Requisite Course(s)	Progress Course(s	ive)				
Course Offering Department	Computer Science Engineering AI ML	Professional / Licensing Standards						

Course Objectives / Course Learning Rationales (CLRs)

- 1. Introduces Computer vision elements, including image, graphics, sound, and video components.
- 2. To learn the fundamentals of computer vision and a real environment.
- 3. To gain knowledge over accessing and modification of multimedia content in a real-world scenario

Course Outcomes / Course Learning Outcomes (CLOs)

	At the end of the course the learner will be able to	Bloom's Level	Expected Proficiency Percentage	Expected Attainment Percentage
Outcome 1	Describe what Computer Vision is and the skill sets needed to be a Computer Vision professional.	3	70%	65%
Outcome 2	Apply basic tools (plots, graphs, summary statistics) to perform Computer Vision tasks.	3	70%	65%
Outcome 3	Describe the Computer Vision Process and how it works.	3	70%	65%
Outcome 4	Apply Computer Vision in different case studies.	6	70%	65%

	Program Learning Outcomes (PLO)												
CLOs	Engineering Knowledge	Design /Development of solutions	Conduct Investigations of Complex Problems	Modern Tool Usage	The Engineer and Society	Environment and Sustainability	Ethics	Individual and Teamwork	Communication	Lifelong Learning	PSO 1	PSO 2	PSO 3
Outcome 1	3	2	1	2						3	3	2	1
Outcome 2	3	1	2	2						3	3	2	2
Outcome 3	3	3	2	2						3	3	2	2
Outcome 4	3	3	2	3						3	3	3	2
Average	3	2	2	2						3	3	2	2

Unit		Required	CLOs	References		
No.	Unit Name	Contact	Addressed	Used		
TT •4 1		Hours				
Unit I	UNIT I: Introduction	9	1	1.0		
	Digital Image Formation and low-level processing:	1	1	1, 2		
	Overview and State-of-the-art Fundamentals of Image	1	1	1		
	Formation,					
	etc;	1	1	1, 2		
	Fourier Transform, Convolution and Filtering,	2	1	1, 2		
	Image Enhancement, Restoration, Histogram Processing	3	1	1, 2		
	introduction to computer vision.	1	1	1, 2		
Unit 2	Feature	9				
	Feature Extraction: Shape, histogram, color, spectral, texture	2	1,2	1		
	Feature analysis, feature vectors, distance /similarity	1	1.2	1		
	measures, data preprocessing	1	1,2	1		
	Edges - Canny, LOG, DOG;	2	1,2	1		
	Scale-Space Analysis- Image Pyramids and Gaussian derivative filters	2	1,2	1,2		
	Gabor Filters and DWT; Line detectors (Hough Transform),	1	12	12		
	Orientation Histogram	1	1,2	1,2		
-	SIFT, SURF, GLOH, Corners - Harris and Hessian Affine.	1	1,2	1,2		
Unit 3	3D modelling	9				
	Depth estimation and Multi-camera views: Perspective	1	2	1,2		
	Homography, Rectification, DLT, RANSAC,	2	2	1,2		
	3-D reconstruction framework; Binocular Stereopsis:	2	2	1,2		
	Camera and Epipolar Geometry; Auto-calibration.	1	2	1,2		
	Image Segmentation: Region Growing, Edge Based	1	2	1,2		
	approaches to segmentation,			-		
	Graph-Cut, Mean-Shift, MRFs, Texture Segmentation, Object	2	2	1,2		
Unit 4	action.	0				
Unit 4	SD transformation	2	2	1.2		
-	KIT Spatio Temporal Analysis	2	3	1,2		
-	Background Subtraction and Modeling	2	3	1,2		
	Dynamic Stereo: Motion parameter estimation	2	3	1,2		
Unit 5	Different Annlications	9	5	1,2		
	Shape from X: Light at Surfaces	3	4	2		
-	Use of Use of Surface Smoothness Constraint	1	4	2		
	Shape from Texture, color, motion and edges Albedo	-	-			
	estimation	3	4	2		
	Photometric Stereo; Phong Model; Reflectance Map.	2	4	2		
	Total contact hours	45				

Bloo	m's Level of	C	b)	End Semester Exam (50%)		
Cug	inuve lask	CLA-1 (15%)	Mid-1 (15%)	CLA-2 (10%)	CLA-3 (10%)	
Level	Remember	200/	200/	200/	200/	200/
1	Understand	5070	3070	3076	3070	3070
Level	Apply	40%	40%	40%	40%	40%
2	Analyse	4070	4070	4070	4070	4070
Level	Evaluate	200/	200/	200/	200/	200/
3 Create		5070	3070	3076	3070	3070
Total		100%	100%	100%	100%	100%

Recommended Resources

- 1. Richard Szeliski (2011) Computer Vision: Algorithms and Applications, Springer-Verlag London Limited .
- 2. Richard Hartley and Andrew Zisserman (2004) Multiple View Geometry in Computer Vision, Second Edition, Cambridge University Press

Other Resources

- 1. D. A. Forsyth, J. Ponce (2003) Computer Vision: A Modern Approach, Pearson Education, 2003.
- 2. R.C. Gonzalez and R.E. Woods (1992) Digital Image Processing, Addison- Wesley.
- 3. K. Fukunaga, Morgan Kaufmann (1990) Introduction to Statistical Pattern Recognition, Second Edition, Academic Press.

Course Designers

1. Dr.Shuvendu Rana, Assistant Professor, Computer Science Engineering, SRM University - AP.

Artificial Intelligence and Neural Networks

Course Code	A MI 561	Course Cotegory	CE	L	Т	Р	С
Course Coue	71112001	Course Category	CE	3	0	0	3
Pre-Requisite Course(s)		Co-Requisite Course(s)	Progressive Course(s)				
Course Offering Department	CSE AI ML	Professional / Licensing Standards					

Course Objectives / Course Learning Rationales (CLRs)

- 1. To develop a foundational understanding of AI principles and techniques.
- 2. To develop problem-solving skills and effective reasoning using AI techniques.
- 3. To learn and apply various neural network techniques in AI systems.
- 4. Applying AI and neural network concepts to solve real-world problems in diverse domains.

Course Outcomes / Course Learning Outcomes (CLOs)

	At the end of the course the learner will be able to	Bloom's Level	Expected Proficiency Percentage	Expected Attainment Percentage
Outcome 1	Identify the Agents and Environments in AI.	1	70%	65%
Outcome 2	Discuss the evaluation functions for optimal decision-making in multiplayer games.	2	70%	65%
Outcome 3	Formalise the propositional and first-order logic and use resolution in problem-solving.	4	70%	65%
Outcome 4	Develop various aspects of feedforward neural networks	5	70%	65%
Outcome 5	Represent competitive learning neural networks and their applications	6	70%	65%

	Program Learning Outcomes (PLO)												
CLOs	Engineering Knowledge	Design /Development of solutions	Conduct Investigations of Complex Problems	Modern Tool Usage	The Engineer and Society	Environment and Sustainability	Ethics	Individual and Teamwork	Communication	Lifelong Learning	PSO 1	PSO 2	PSO 3
Outcome 1	3	2	1	2						3	3	2	1
Outcome 2	3	1	2	2						3	3	2	2
Outcome 3	3	3	2	2						3	3	2	2
Outcome 4	3	3	2	3						3	3	3	2
Outcome 5	3	2	2	2						3	3	2	2
Average	3	2	1	2						3	3	2	1

Unit	Unit Nomo	Required	CLOs	References	
No.	Unit Name	Contact Hours	Addressed	Used	
Unit 1	Introduction	9			
	Introduction: AI problems, foundation of AI and history of AI intelligent agents	2	1	1, 2	
	Agents and Environments,	2	1	1, 2	
	The concept of rationality,	1	2	1, 2	
	The nature of environments,	1	2	1, 2	
	Structure of agents,	1	1, 2	1, 2	
	Problem solving agents,	1	1, 2	1, 2	
	Problem formulation.	1	1, 2	1, 2	
Unit 2		10			
	Searching: Searching for solutions,	1	1	1, 2	
	uniformed search strategies – Breadth first search, depth first Search.	2	1	1, 2	
	Search with partial information (Heuristic search)	1	1	1, 2	
	Greedy best first search, A* search	1	2,3	1, 2	
	Game Playing: Adversial search, Games,	1	3, 4	1, 2	
	minimax algorithm,	1	3, 4	1, 2	
	optimal decisions in multiplayer games.	1	3.4	1.2	
	Alpha-Beta pruning, Evaluation functions, cutting of search.	2	2	1, 2	
Unit 3		8			
	Knowledge Representation & Reasons logical Agents, Knowledge – Based Agents,	1	2	1, 2, 3, 4	
	The Wumpus world, logic, propositional logic,	1	2, 3	1, 2, 3, 4	
	Resolution patterns in propositional logic, Resolution,	2	2, 3,5	1, 2, 3, 4	
	Forward & Backward Chaining.	1	2, 3	1, 2, 3, 4	
	First order logic. Inference in first order logic,	1	2, 3	1, 2, 3, 4	
	Propositional Vs. first order inference,	1	3,4	1, 2, 3, 4	
	unification & lifts forward chaining, Backward chaining, Resolution.	1	3, 4	1, 2, 3, 4	
Unit 4		10			
	Characteristics of Neural Networks, Historical Development of Neural Networks Principles,	1	1, 2	1, 2, 3, 4	
	Artificial Neural Networks: Terminology, Models of Neuron, Topology,	2	2	1, 2, 3, 4	
	Basic Learning Laws, Pattern Recognition Problem, Basic Functional Units, Pattern Recognition Tasks by the Functional Units.	2	3, 4	1, 2, 3, 4	
	Feed forward Neural Networks: Introduction, Analysis of pattern Association Networks,	2	2, 3	1, 2, 3, 4	
	Analysis of Pattern Classification Networks,	1	3, 4	1, 2, 3, 4	
	Analysis of pattern storage Networks; Analysis of Pattern Mapping Networks.	2	3, 4	1, 2, 3, 4	
Unit 5		8			
	Feedback Neural Networks: Introduction,	1	1,2,3	1, 2,5	
	Analysis of Linear Auto associative FF Networks, Analysis of Pattern Storage Networks.	2	1,2,3	1,2,5	
	Competitive Learning Neural Networks & Complex pattern Recognition: Introduction.	1	1,2,3	1,2,5	
	Analysis of Pattern Clustering Networks,	1	1,2,3,4	1,2,5	

Total Theory Contact Hours	45				
Associative Memory	2	1,2,3,4	1,2,5		
Analysis of Feature Mapping Networks	1	1,2,3,4	1,2,5		

Bloom's Level of Cognitive Task		Continuous Learning Assessments (50%)								End Semester	
		CLA-1 (10%)		Mid-1 (15%)		CLA-2 (10%)		CLA-3 (15%)		Exam (50%)	
		Th	Prac	Th	Prac	Th	Prac	Th	Prac	Th	Prac
Level	Remember	40%		40%		40%		40%		10%	
1	Understand										
Level	Apply	40%		40%		40%		40%		50%	
2	Analyse										
Level	Evaluate	20%		20%		20%		20%		40%	
3	Create	1									
	Total	100%		100%		100%		100%		100%	

Recommended Resources

- 1. Stuart Russel, Peter Norvig, Artificial Intelligence A Modern Approach. Second Edition, PHI/ Pearson Education.
- 2. B. Yagna Narayana, Artificial Neural Networks PHI
- 3. E.Rich and K.Knight Artificial Intelligence, 2nd Edition, (TMH).
- 4. Patterson, Artificial Intelligence and Expert Systems PHI.
- 5. Giarrantana/ Riley, Thomson, Expert Systems: Principles and Programming- Fourth Edn,.

Other Resources

- 1. Ivan Bratka, PROLOG Programming for Artificial Intelligence. Third Edition Pearson Education.
- 2. Simon Haykin, Neural Networks, PHI
- 3. Patrick Henry Winston., Artificial Intelligence, 3rd Edition, Pearson Edition

Course Designers

1. Dr. Radha Guha, Professor, Computer Science Engineering, SRM University - AP.