
The detection of a stuck-at fault in the digital circuit requires specific set of
inputs, commonly known as test inputs. The generation of such test input
patterns automatically is called automatic test pattern generation (ATPG). The
fault detection problem is NP-complete. Therefore, with an increase in the size
of the circuit and consequently the possibility of the number of faults, the
generation of test inputs becomes computationally challenging. We have used
the Boolean satisfiability (SAT) algorithm to deal with such complexity. Along
with the inputs and outputs, the faults are assumed as additional variables, and
the SAT equation was generated. The result of this SAT problem was obtained
with Minisat 2.2 algorithm. The results obtained were analyzed to determine the
test pattern. The SAT-based approach has much less complexity than 2n because
of heuristic nature of the SAT solvers. The results are provided for
combinational circuits with stuck-at faults. The method is extendible to the faults
in sequential circuits in the future.

Keywords: Boolean Satisfiability, Conjunctive Normal Form, NP-Complete,
Automatic test pattern generation (ATPG)

ABSTRACT

INTRODUCTION

The method explained above was implemented with python programming
language. For the demonstration of our algorithm, we assumed two stuck-at
faults, f1 and f2 in a 2:1 mux circuit and obtained the desired test patterns.

MAIN RESULTS

CONCLUSIONS

Satisfiability algorithms reduce the complexity of finding test patterns
much below 2n. The SAT-based algorithm is capable of generating
multiple test patterns simultaneously. It also addresses the critical issue
of generating a test pattern for multiple simultaneous stuck-at faults.
However, the problem of separating equivalent faults still persists. The
method is implemented on combinational circuits, which we will try to
extend for sequential circuits in our future work.

KEY REFERENCES

ACKNOWLEDGEMENTS

We thank our advisor, Dr. Anuj Deshpande, for his invaluable guidance and support during
this project.

Different fault models exist in digital circuits, like the bridging fault model,
transistor faults, stuck-at-fault model, and open fault model. Among these, the
stuck-at-faults are more likely to occur, and thus their detection becomes
essential [1]. In the current work, we confined ourselves only to the detection
of stuck-at faults. A connection is shorted with either supply voltage or
ground in a stuck-at fault, making it permanent ‘logic 1’ or ‘logic 0’. Due to
these faults, the behavior of the circuit may change. For detecting such faults,
the inputs are required such that the effect of faults on the output is
observable. Such inputs are called test inputs, and the sequence is called test
pattern [1].

Automatic Test Pattern Generation (ATPG) is a method that is used to find the
test pattern or test sequence. There are several methods available for the ATPG
in combinational and sequential circuits [1]. Since the fault detection problem
is NP-complete [2], Boolean satisfiability (or SAT) algorithms are one of the
best-suited methods to find appropriate test sets [3]. The SAT algorithms
determine if there exists at least one assignment such that the conjunctive
normal form (CNF) expression holds TRUE. Some of the interesting SAT-
based ATPG methods were given in [4-7]. Our work extends the SAT idea to
generate ATPG to detect multiple simultaneous stuck-at faults with Minisat 2.2
[8] when the Boolean circuit description is known.

Department of Electronics and Communication Engineering, SRM University-AP
P Partha Koundinya, Y Sai Krishna Reddy , K Rutwesh , V Mani Deepak

SAT BASED AUTOMATIC TEST PATTERN GENERATION

From the equivalence relation, we get, 𝑌 ↔ 𝑌ଵ + 𝑌ଶ

(𝑌 + (𝑌ଵ + 𝑌ଶ)). (𝑌 + (𝑌ଵ + 𝑌ଶ)) ≡ 1

(𝑌+D0+D1).(D1+𝑌+𝑆). (S+𝑌+D0).(S+Y+𝐷0). (S+Y+𝐷1) ≡ 1

This expression is converted to DIMACS file as shown in Fig. 1

S D0 D1 Y

1 2 3 4
c This is a DIMAC FILE

p cnf 4 5
-4 2 3 0

3 -4 -1 0
1 -4 2 0

1 4 -2 0
-1 4 -3 0

3. Algorithm to generate the test inputs : After step 1 and step 2 the following
algorithm is then implemented to obtain test inputs for different fault conditions.

The algorithm described in Fig 2 was implemented on Fig. 3, and after
analyzing the results, the following test patterns were obtained.

S D0 D1 P1 F1 P2 F2 Y

1 2 3 4 5 6 7 8

Type of Faults Test Pattern

(S, D0, D1
respectively)Fault f1 Fault f2

Sa-0 Absent 010,011
Sa-1 Absent 001,000

Absent Sa-0 101,111
Absent Sa-1 000,001,100,110,

Sa-0 Sa-0 010,011,101,111
Sa-1 Sa-0 000,001,101,111
Sa-0 Sa-1 000,001,100,110
Sa-1 Sa-1 000,001,100,110

[1] M. Abramovici, M. A. Breuer, and A. D. Friedman, “Digital systems testing and testable
design,“ Design for Testability, 1990.
[2] E. Fornasini and M. E. Valcher, “Fault detection analysis of Boolean control networks,"
IEEE Transactions on Automatic Control, vol. 60, no. 10, pp. 2734-2739, 2015.
[3] S. A. Cook, “The complexity of theorem-proving procedures," in Proceedings of the third
annual ACM symposium on Theory of computing. ACM, 1971, pp. 151-158.
[4] S J. Marques-Silva and L. Guerra e Silva, "Solving satisfiability in combinational
circuits," in IEEE Design & Test of Computers, vol. 20, no. 4, pp. 16-21, July-Aug. 2003.
[5] P. Lin and S. P. Khatri, “Efficient cancer therapy using Boolean networks and Max-SAT-
based ATPG," in IEEE International Workshop on Genomic Signal Processing and Statistics
(GENSIPS).
IEEE, 2011, pp. 87-90.
[6] Deshpande, Anuj and Layek, Ritwik, “Fault Detection and Therapeutic Intervention in
Gene Regulatory Networks using SAT Solvers”, Biosystems, Elsevier, Volume 179, Pages
55-62, May 2019.
[7] S. Eggersglub and R. Drechsler, "A Highly Fault-Efficient SAT-Based ATPG Flow," in
IEEE Design & Test of Computers, vol. 29, no. 4, pp. 63-70, Aug. 2012.
[8] Eén N. and Sörensson N., “An Extensible SAT-solver”, in Theory and Applications of
Satisfiability Testing. SAT 2003.LNCS, vol 2919. Springer, Berlin, Heidelberg.

METHODOLOGY

2. Consideration of fault as a variable : Assume that there is fault in a wire that
connects x with y. The fault has three states, viz. no-fault, stuck-at 0 (sa-0), and
stuck-at 1 (sa-1). Therefore, it requires minimum two variables to represent these
states, let us say p and f , where p indicates presence (existence) of the fault and f
indicates the type of the fault (sa-0 or sa-1). Therefore, we get output expression
as 𝑦 = 𝑥�̅� + 𝑝𝑓. A SAT expression and DIMACS file can be derived along with
these new variables as explained earlier. This type of modeling is also followed
in [6].

Methodology involves the following steps.

1. Derivation of SAT expression and DIMACS file: The SAT expression is
usually represented in CNF or product of sum form. The SAT expression can
be derived from the Boolean equivalence expression given by 𝑝 ↔ 𝑞 ≡
 �̅� + 𝑞 𝑝 + 𝑞ത . This equation always holds true for any binary value of p and
q. DIMACS file is a standard format which describes the Boolean circuit that
can be given as an input to the SAT solver. For example, the SAT expression
and DIMACS for 2 X 1 MUX is shown in Fig. 1.

Fig. 1: Example to represent 2 X 1 fault-free MUX in a DIMACS format.

Fig. 2: Flowchart of the complete process to obtain the test pattern. The satisfiability is
tested with MiniSAT2.2 algorithm.

Fig. 3: Example of 2 X 1 MUX with two faults and corresponding DIMACS format.

