| CSE Syllabus For General Aptitude | | | | |-----------------------------------|---|--|--| | Topics | Sub-topics | | | | Verbal
Aptitude | English grammarVocabulariesReading and comprehensionNarrative sequencing | | | | Quantitative
Aptitude | Data interpretation 2 & 3-dimensional plots Maps & tables Numerical computation & estimation that includes ratios, percentages, powers, exponents & logarithms Permutations & combinations Mensuration & geometry Elementary statistics & probability | | | | Analytical
Aptitude | Logic: Deduction & induction AnalogyNumerical relations & reasoning | | | | Spatial
Aptitude | Transformation of shapes like translation, mirroring, rotation & scaling Assembling & grouping Paper folding, cutting, and patterns (2 & 3 dimensions) | | | | CSE Syllabus For Core Subjects | | | | | |--|---|--|--|--| | Subject | Syllabus | | | | | Digital Logic | Boolean algebra Combinational and sequential circuits Minimization Number representations and computer arithmetic (fixed and floating-point) | | | | | Computer Organization and Architecture | Machine instructions and addressind modes ALU, data- path and control unit Instruction pipelining, pipeline hazards Memory hierarchy: cache, main memory and secondary storage I/O interface (interrupt and DMA mode) | | | | | Programming and Data
Structures | Programming in C Recursion Arrays Stacks Queues Linked lists Trees Binary search trees Binary heaps Graphs | |------------------------------------|--| | Algorithms | Searching Sorting Hashing Asymptotic especial and some same same same same same same same sa | | Theory of Computation | Regular expressions and finite automata Context-free grammars and push-down automata Regular and context-free languages Pumping lemma Turing machines and undecidability. | | Compiler Design | Lexical analysis Parsing Syntax-directed translation Runtime environments Intermediate code generation Local optimizatio Data flow analyses: constant propagation, liveness analysis, common subexpression elimination | | Operating System | System calls, processes, threads Inter- process communication Concurrency and synchronization Deadlock CPU and I/O scheduling Memory management and virtual memory File systems | | Databases | ER- model Relational model: relational algebra, tuple calculus, SQL. Integrity constraints, normal forms. File organization, indexing (e.g., B and B+ trees). Transactions and concurrency control | | Computer I | Networks | |------------|----------| |------------|----------| - Concept of layering: OSI and TCP/IP Protocol Stacks - · Basics of packet, circuit and virtual circuit-switching - Data link layer: framing, error detection, Medium Access Control, Ethernet bridging - Routing protocols: shortest path, flooding, distance vector and link-state routing - Fragmentation and IP addressing - IPv4, CIDR notation, - Basics of IP support protocols (ARP, DHCP, ICMP), Network Address Translation (NAT) - Transport layer: flow control and congestion control, UDP, TCP, sockets - Application layer protocols: DNS, SMTP, HTTP, FTP, Email